
ITS332

Information Technology Laboratory II

Networking Lab Manual

by

Steven Gordon

Sirindhorn International Institute of Technology

Thammasat University

This manual is also available as:
HTML: ict.siit.tu.ac.th/˜sgordon/netlab/

PDF: ict.siit.tu.ac.th/˜sgordon/reports/netlab-manual.pdf

Course Web Site: ict.siit.tu.ac.th/moodle/

8 January 2015 (r3521)

http://ict.siit.tu.ac.th/~sgordon/netlab/
http://ict.siit.tu.ac.th/~sgordon/reports/netlab-manual.pdf
http://ict.siit.tu.ac.th/moodle/

Contents

1 Introduction 1
1.1 About ITS332 Information Technology Lab II 1
1.2 About the Lab Manual . 1

1.2.1 How to Use the Manual . 1
1.2.2 Notation . 1
1.2.3 Other Resources . 2

1.3 Completing the Tasks . 2
1.3.1 Making Notes . 2
1.3.2 Drawing Message Sequence Diagrams 3
1.3.3 Drawing Packets . 3
1.3.4 Network Design . 4
1.3.5 What Not To Do . 4

1.4 Further Information Sources . 4

2 Ubuntu Linux 7
2.1 What is Ubuntu Linux? . 7

2.1.1 Why Not Microsoft Windows? . 7
2.2 Common Operations . 8

2.2.1 Starting Ubuntu Linux . 8
2.2.2 User Accounts and Login . 8
2.2.3 Window System . 9
2.2.4 Command Line Shell . 9
2.2.5 Text and Source Code Editing . 11
2.2.6 Applications . 11

2.3 Advanced Operations . 11
2.3.1 Installing Software . 11
2.3.2 Compiling C Code . 12

2.4 Tasks . 12

3 Wireshark 15
3.1 Packet Capture . 15
3.2 Capturing with tcpdump . 16
3.3 Viewing and Analysing Packets with Wireshark 17

3.3.1 Viewing Captured Traffic . 17
3.3.2 Analysis and Statistics . 17
3.3.3 Filters . 19

3.4 Tasks . 21

i

ii CONTENTS

4 Client/Server Applications 25

4.1 Clients, Servers and Addressing . 25

4.1.1 Addresses and Ports . 25

4.1.2 Servers . 26

4.1.3 Clients . 26

4.2 Web Browsing . 27

4.2.1 Server Configuration Files . 27

4.2.2 Controlling the Web Server . 28

4.2.3 Creating Web Pages . 28

4.2.4 Server Logs . 28

4.2.5 Basic Authentication . 29

4.3 Remote Login . 30

4.4 Tasks . 30

5 Networking Tools 33

5.1 Operating Systems and Tool Interfaces 33

5.2 Viewing Network Interface Information 34

5.3 Viewing Ethernet Interface Details . 34

5.4 Testing Network Connectivity . 35

5.4.1 ping at SIIT . 36

5.5 Testing a Route . 36

5.6 Converting Between Domain Names and IP Addresses 37

5.7 Viewing the Routing Table . 38

5.8 Converting IP Addresses to Hardware Addresses 38

5.9 Network Statistics . 38

5.10 Viewing More Network Information: Useful Files 39

5.11 Automatic IP Address Configuration . 39

5.11.1 How Does DHCP Work? . 39

5.11.2 Viewing Interface Information . 40

5.11.3 Viewing DHCP Information . 40

5.11.4 Setting a Static IP Address . 41

5.12 Tasks . 41

6 Layer 2 Networking 45

6.1 Peer-to-Peer Networks . 45

6.1.1 Background . 45

6.1.2 Ethernet Cabling . 46

6.2 Switched Network . 48

6.3 Tasks . 49

7 Layer 3 Networking 53

7.1 Routers . 53

7.1.1 Routers and Hosts . 53

7.1.2 Enabling Routing . 54

7.1.3 Editing the Routing Table . 55

7.2 Tasks . 56

CONTENTS iii

8 Firewalls 59

8.1 Understanding Firewalls . 59

8.1.1 How Do Firewalls Work? . 60

8.1.2 Firewall Rules . 60

8.1.3 Firewalls and Servers . 62

8.1.4 Firewalls on Linux: iptables . 62

8.2 Tasks . 63

9 Socket Programming 67

9.1 Programming with Sockets . 67

9.1.1 Servers Handling Multiple Connections 69

9.1.2 Further Explanation . 69

9.2 Tasks . 70

A Acronyms and Units 73

A.1 Acronyms . 73

A.2 Units . 74

B Lab Facilities 75

B.1 Work Stations . 75

B.2 Network Infrastructure . 75

C Ubuntu Reference Material 79

C.1 Commands . 79

C.2 Files and Directories . 79

D C Sockets Examples 81

D.1 TCP Sockets in C . 81

D.1.1 Example Usage . 81

D.1.2 TCP Client . 82

D.1.3 TCP Server . 84

D.2 UDP Sockets in C . 87

D.2.1 Example Usage . 87

D.2.2 UDP Client . 88

D.2.3 UDP Server . 89

E Python Sockets Examples 93

E.1 TCP Sockets in Python . 93

E.1.1 Example Usage . 93

E.1.2 TCP Client . 93

E.1.3 TCP Server . 94

E.2 UDP Sockets in Python . 95

E.2.1 Example Usage . 95

E.2.2 UDP Client . 95

E.2.3 UDP Server . 96

E.3 Raw Sockets in Python . 96

iv CONTENTS

F Packet Formats and Constants 101
F.1 Packet Formats . 101
F.2 Port Numbers and Status Codes . 102

List of Figures

1.1 Example message sequence diagram . 3
1.2 Example packet diagram . 4
1.3 Single Router Network . 4

3.1 Capturing packets in the Operating System 16
3.2 Main window of Wireshark . 18

6.1 Layer 2 Peer-to-peer Network . 45
6.2 Example ordering of Ethernet sockets on computer and switch 47
6.3 Ethernet straight-through cable connection 47
6.4 Ethernet cross-over cable connection . 48
6.5 Layer 2 Switched Network . 49

7.1 Comparison of Router and Host . 55

8.1 An organisation views their network as inside, and all other networks as
outside . 60

8.2 Example firewall rules . 61
8.3 Chains in iptables . 63

9.1 Socket communications . 68

B.1 Network Lab: Connections for each computer 76
B.2 Network Lab: Connections for each group of 9 computers 77
B.3 Network Lab: Connections for entire lab 78

F.1 IP Datagram Format . 101
F.2 TCP Segment Format . 101
F.3 UDP Datagram Format . 102
F.4 Ethernet Frame Format . 102

v

vi LIST OF FIGURES

List of Tables

3.1 Common Wireshark Display Filters . 20
3.2 IEEE 802.11 Wireshark Display Filters 20

C.1 General Ubuntu commands . 79
C.2 Important Ubuntu networking commands 80
C.3 Important Ubuntu files and directories 80

vii

viii LIST OF TABLES

Chapter 1

Introduction

1.1 About ITS332 Information Technology Lab II

The course ITS332 Information Technology Laboratory II is a lab covering introductory
concepts and technologies in networking. This document is the manual for the lab tasks.
For information about the course structure, lab dates, instructors, assessment and email
list, see the course website at:

http://ict.siit.tu.ac.th/moodle/

From the course website you can find online (HTML) and PDF versions of this manual
(direct links are on the title page of this document).

1.2 About the Lab Manual

1.2.1 How to Use the Manual

You can use this lab manual as a reference document, rather than a set of instructions
for the lab. That is, you do not have to read this manual from start to finish.

Starting from Chapter 2, each chapter roughly corresponds to a lab class (some chap-
ters are covered across two classes). A chapter provides background on the technologies
you are going to learn in the class, including examples and reference material. At the
end of each chapter is a list of general tasks. The lab instructor will inform you about
details of each task.

In some cases you don’t have to read the entire chapter: after listening to the instructor
you can get started on the tasks. Then refer back to the manual when you have problems.

You should also use this manual to record notes. See Section 1.3 for details about
tasks and notes.

1.2.2 Notation

Often you will use a terminal (command line) to enter commands. This lab manual
explains different commands using examples enclosed in a box, as illustrated below.

File: Steve/Courses/2014/s2/its332/intro.tex, r3463

1

http://ict.siit.tu.ac.th/moodle/

2 CHAPTER 1. INTRODUCTION

• The command prompt is where you type commands using a terminal. In this
manual the prompt is shown as a dollar sign ($). You do not type this in.

• Commands that you should type are given after the command prompt.

• Variables are part of a command, but a string that you must choose. For example,
FILENAME below is a variable: you should type in a suitable name of a file.

• Comments are shown in italics following a hash symbol (#). This is just to explain
to the reader. You do not type it in.

• Output of commands is shown without a command prompt. For example, the
output of the first command below has 3 lines, while the output of the second
command is a single line.

$ cat FILENAME # this command displays the contents of a file

line1

line2

line3

$ wc example.txt # this command counts lines, words and bytes in a file

3 3 18 example.txt

1.2.3 Other Resources

Although this lab manual contains some links to websites that provide further informa-
tion, you can find many more links and resources (including lecture slides, source code
and examples) via the course website.

1.3 Completing the Tasks

1.3.1 Making Notes

It is important that you make notes of what you do and what you learn when completing
tasks. The notes help you in identifying the important information, and hopefully will
help you in study for exams. The things you should note include:

• Record the commands you used to perform tasks (especially if it is different from
the commands given in this manual). Include a description of the important options
used. An example:

To view the routing cache run the command:

route -C -n

The -C option displays the cache (instead of table),

while the -n option shows only IP addresses (not domains).

• Note important concepts learnt from the tasks and from the instructors. An exam-
ple:

http://ict.siit.tu.ac.th

1.3. COMPLETING THE TASKS 3

Reverse DNS maps IP addresses to domain names. But not all

organisations register the reverse mapping.

• Illustrate the operation of protocols, and the packets transferred. See Sections 1.3.2
and 1.3.3 for details.

• When building a network, record the design of the network. See Section 1.3.4 for
details.

1.3.2 Drawing Message Sequence Diagrams

One method to illustrate the operation of a protocol is to draw the exchange of packets
between the involved entities. Such a diagram is often called a message sequence diagram.
Figure 1.1 shows an example message sequence diagram.

10.10.6.134
Port: 1540

10.10.6.1
Port: 24

SYN

SYN+ACK

ACK+DATA(Seq=1)

The address or
identifier of the node

that initiates the
exchange

The address
information is relevant
to the protocol you are

describing.

Name or type of
message

If useful, include extra
information about the

message contents

Figure 1.1: Example message sequence diagram

1.3.3 Drawing Packets

Understanding the relationship of protocols to different layers is important to under-
standing the role of a protocol in a communications network. As encapsulation is often
used in protocol layers, drawing a packet with the headers added by the different layers
is one method of visualising the layers. The headers of each layer can be drawn simply
noting the name of the protocol for each header. Although sometimes you may included
extra information, such as values of important fields in selected headers. Also, showing
the size of headers and data can be useful. Figure 1.2 gives an example illustration of a
packet.

4 CHAPTER 1. INTRODUCTION

IP TCP DataIEEE 802.3 HTTP

Figure 1.2: Example packet diagram

1.3.4 Network Design

When you build a network you should record the design with enough detail such that a
student next year could read your design and build the exact same network. Information
you often include in the design includes:

• A diagram of the network topology. This should show the devices and links in
the network, with each clearly labelled with a meaningful name (e.g. client, server,
switch) or technology (e.g. Ethernet crossover cable). Figure 1.3 provides an exam-
ple.

• Addresses of devices, especially IP addresses. You often can include them on the
network diagram.

• Commands and operations you performed to configure the network. E.g. routing
tables, application configuration.

• Commands and operations you performed to test the network, as well as important
results from tests. E.g. ping and the average response time.

Router CHost A Host B

IF1 IF1 IF2 IF1

Figure 1.3: Single Router Network

1.3.5 What Not To Do

When completing tasks, often applications will produce output on the screen. Do not
waste your time by copying the output from the screen to your notes. You should look
at the output and try to understand the important information it tells you. If you want
a record of the output, take a screenshot and save the file.

1.4 Further Information Sources

The course website has links to numerous other sites with useful information about net-
working software and hardware. During the lab several sources of information you may
regularly use include:

1.4. FURTHER INFORMATION SOURCES 5

• Linux manual pages. On Linux, help can be found for almost all commands (and
many important files) via the manual pages . Via the terminal, simply type man

followed by the name of the command and you will see a detailed description of the
command including the options available. Instead of asking your instructor about
how to use a command, you should RTFM!

• Wikipedia. For details about protocols, packet/header formats, and even file for-
mats, Wikipedia and other similar reference sites (or a search engine) is a good
place to look.

http://www.wikipedia.org/

6 CHAPTER 1. INTRODUCTION

Chapter 2

Ubuntu Linux

2.1 What is Ubuntu Linux?

Linux is an operating system based on Unix, one of the earlier multi-user operating
systems developed in the 1970’s and 1980’s. Unix was originally a single operating sys-
tem, but over time several commercial variants were developed. These Unix operating
systems were particularly popular in the 1980’s and 1990’s, especially within academic
and technology organisations. Some of the Internet applications and protocols were first
developed on Unix, and hence Unix-based computer systems have a strong link with
computer networking.

Today Unix operating systems are still used, mainly in servers and high-end worksta-
tions. In the 1990’s Linux appeared, a free operating system with Unix-like functionality
(or at least a kernel for an operating system). In the 2000’s, Linux also became popular
in typical Unix domains of servers and workstations, and also has been growing in the
desktop field (however, in quantity of installs, Linux still does not compare with Microsoft
Windows). As with the original Unix, there are many variants, or distributions of Linux,
differing in the applications and graphical environments they provide (e.g. RedHat, De-
bian, Fedora, Ubuntu, Xandros). We will be using the Ubuntu Linux distribution.

Ubuntu Linux is a free, open-source Unix-based operating system, that has been de-
veloped mainly for desktop (and laptop) installations. The aim is to make a user-friendly
Linux distribution. It is now one of the more popular Linux distributions. Ubuntu is
installed on the Network Lab computers, and will be used extensively to demonstrate
computer network operations in ITS 332. This document aims to give a quick introduc-
tion to some of the most common operations that you will need during the course.

2.1.1 Why Not Microsoft Windows?

Why use Ubuntu Linux, and not Microsoft Windows, especially since Windows is by far
the most popular desktop operating system, and hence very popular with server systems?
There are several reasons we will use be using Linux instead of Windows:

1. Linux is well-suited for learning of networking concepts:

File: Steve/Courses/2014/s2/its332/linux.tex, r3463

7

http://www.linux.org/dist/list.html
http://www.ubuntu.com

8 CHAPTER 2. UBUNTU LINUX

(a) Linux has simple, yet powerful, operations for many networking tasks such as:
changing an IP address, creating routing tables, testing network connectivity,
inspecting traffic recevied/sent, and so on.

(b) Implementing and compiling simple client/server applications is straightfor-
ward on Linux.

(c) A Linux PC can easily be configured as a router (all the PCs in the Network
Lab have two interface cards).

2. Experience in Unix-based operating systems is important: Although Windows is the
most commonly used operating system for desktops, Unix-based operating systems
(including Linux) are common for network servers, network devices and embedded
systems. For example, many routers, switches and specialised computer devices use
Linux.

3. Ubuntu Linux is free, as are all the applications we use (and none of them are
pirated!)

2.2 Common Operations

2.2.1 Starting Ubuntu Linux

When the computer boots, within the first several seconds a program gives you the option
to start Windows or Ubuntu. You should select Ubuntu, which will boot Ubuntu Linux.

2.2.2 User Accounts and Login

Once Ubuntu has started you are presented with a login screen. You should login with
the username/password provided in the class.

Different users in Ubuntu have different privileges (e.g. ability to view or edit system
files, view or edits other peoples files, change important operating system parameters).
The user with the most privileges (that is, can do everything!) is called root (sometimes
also called super-user). The problem with logging in as root is that a simple typing
mistake may delete the entire hard drive!

The user you login as is just a normal user—lets refer to them as student. The user
student has the ability to view and edit their own files in the directory /home/student,
view most system files (that is almost all files on the hard disk, except those of other
users) and view configuration options (such as IP address). You must always login as
this normal user, and perform most operations as this normal user.

However, sometimes during the lab classes it will be necessary to perform tasks that
require more priveleges than the student user. For example, you require root privileges to
install new software, change IP addresses and modify system files (such as configuration
parameters for the web server). The student user has been configured to allow them to
temporarily gain the privileges of the root user for these tasks. You do this using the
sudo command.

Lets assume there is a command you need to execute in the command line shell (see
Section 2.2.4). The command is:

2.2. COMMON OPERATIONS 9

$ command parameter1 parameter2

However, you must execute this as root user (since as the normal user, you are not
allowed). So you would actually run the command by preceding it with sudo:

$ sudo command parameter1 parameter2

On the first use of sudo you will be prompted for a password—it is the password
you logged in as student with. Then the command will execute. If you do not use sudo

(and the command is privileged), the the command will not execute (usually returning
an error like Permission denied).

Note that sudo should only be used for running command line applications as root.
To run graphical applications as root (such as gedit or wireshark) use gksudo. The
method is the same as with sudo, except the password will be prompted via a graphical
window.

A final note on the root user. As we said before, you can potentially delete the entire
hard drive. As we give you the access to perform operations as root user, you must act
responsibly. Anyone caught using these privilelges incorrectly will be punished. This
includes deleting system or other users files, copying other users files, changing param-
eters of the operating system and installing software which is not needed for the class.
Punishment may range from loss of marks for the lab class, to more severe punishment
in line with that for cheating (e.g. zero for the course).

2.2.3 Window System

Ubuntu has a graphical windows system like most other operating systems. It is quite
intuitive once you know the basics. The main functions can be obtained by clicking on
the Dash Home on the left dock and then either searching or browsing for applications.

Although many of the networking operations can be performed using the graphical
tools, almost all have a command line interface.

2.2.4 Command Line Shell

Like almost all Unix-based systems, operations can be performed via a command line shell
or terminal. In Ubuntu, to start a new terminal select Accessories and then Terminal
from the Applications menu1.

Some of the more common operations you will use include:

cd change directory

ls list the files in the directory

man view the manual (help) for a command

cp copy a file

mv move/rename a file

1You can also access a terminal, or tty1 using Ctrl-Alt-F1. This doesn’t use the windowing system.
To switch back to the windowing system use Ctrl-Alt-F7. tty2 through to tty6 can also be accessed
using F2 through to F6 instead of F1.

10 CHAPTER 2. UBUNTU LINUX

rm remove/delete a file

mkdir make/create a directory

rmdir remove/delete a directory

less display a file

cat display a file

echo print text to the screen (standard output)

pwd display the name of the present/current working directory

wc display the number of lines, words and bytes in a file

> redirect output to file

< redirect file to input

ps list the current processes running

& place process to be started into the background

Ctrl-c stop (kill) the currently active process

Ctrl-z suspend the currently active process

bg place the the just suspended process into the background

fg bring the background process to the foreground

An example of using some of these commands is shown below.

$ pwd

/home/sgordon

$ mkdir test

$ cd test

$ pwd

/home/sgordon/test

$ nano example.txt # use the text editor to write ’Hello, my name is Steve.’

$ cat example.txt

Hello, my name is Steve.

$ ls

example.txt

$ ls -l

total 4

-rw-r--r-- 1 sgordon sgordon 25 2009-11-06 16:34 example.txt

$ wc example.txt

1 5 25 example.txt

$ cp example.txt copy-of-example.txt

$ ls

copy-of-example.txt example.txt

$ rm example.txt

$ ls

copy-of-example.txt

$ mv copy-of-example.txt example.txt

2.3. ADVANCED OPERATIONS 11

$ ls

example.txt

$ rm example.txt

$ ls

$ ls -al

total 12

drwxr-xr-x 2 sgordon sgordon 4096 2009-11-06 16:36 .

drwxr-xr-x 75 sgordon sgordon 8192 2009-11-06 16:33 ..

$ echo ’Hello’

Hello

$ echo ’Hello’ > another-example.txt

$ cat another-example.txt

Hello

$ wc another-example.txt

1 1 6 another-example.txt

$ rm another-example.txt

$ ls

$ cd ..

$ rmdir test

We will introduce network-specific operations during the labs. For reference, some
networking commands are listed in Appendix C.

2.2.5 Text and Source Code Editing

Although everyone has their own preferences about text and source code editors, two
standard editors in Ubuntu that are recommended are:

gedit A GUI based editor, with syntax highlighting. Can be opened from Accessories
then Text Editor from the Applications directory, otehrwise executing gedit from
the command line.

nano A command line based editor. Provides a quick and simple way to edit a file.
The main commands available to you once in nano are listed at the bottom of the
display. Theˆcharacter means the Ctrl key. To save a file use Ctrl-o. To exit, where
you are also prompted if you want to save a file, use Ctrl-x.

2.2.6 Applications

Some of the applications that we may use during the labs include:

Wireshark Capture and view traffic on a network interface. Command: wireshark.
Also available via the GUI menus.

Apache Web Server A common web server.

2.3 Advanced Operations

2.3.1 Installing Software

Although it should not be required during the labs, (and you must not install any software
unless asked to by the instructor!), Ubuntu has a simple command line interface to
installing software, using apt-get:

12 CHAPTER 2. UBUNTU LINUX

$ apt-get install NAME

where NAME is the name of the software package you want to install. Of course, you
need administrator privileges to install software (hint: sudo).

2.3.2 Compiling C Code

You can use the GNU C Compiler to compile C code:

$ gcc -o EXECUTABLE FILE.c

while compile FILE.c and create the executable program named EXECUTABLE.

2.4 Tasks

Task 2.1. Follow the demonstration by the instructor to learn basic Linux commands
and operations.

Task 2.2. Find the Linux Reference Sheet on the course website; make sure it is easily
accessible in each lab.

Task 2.3. Install (Ubuntu) Linux on your own computer and practice the command line
at home. The easiest way is to install inside a virtual machine, e.g. using VirtualBox or
VMWare.

2.4. TASKS 13

14 CHAPTER 2. UBUNTU LINUX

Chapter 3

Wireshark

This lab will introduce you to an application for capturing traffic on networks. By
“capturing”, we mean record and view the details of every packet sent and received
by the computer. We use two applications: tcpdump and Wireshark 1. Packet capture
applications are useful to inspect the details of the network operations being performed
by your computer (and the network), thereby used to diagnose problems. We will use
often use it in labs to understand how protocols work.

3.1 Packet Capture

The implementation of protocol layers in a network device (computer, router, switch, etc.)
is done in a mix of hardware and software. Typically the Physical and Data Link layer
are implemented in hardware, e.g. on an Ethernet LAN card. Drivers are special pieces
of software that provide an interface from the operating system to a specific hardware
device. That is, the Ethernet driver provides the functions for your operating system to
receive Ethernet frames (and put them into memory) from your LAN card. The operating
system normally implements the Network and Transport layers in software: that is, there
is a software process that implements IP, as well as separate processes to implement UDP,
TCP, ICMP and other transport layer protocols. Finally, each individual application (like
web browsers, email clients, instant messaging clients) implement the Application layer
protocols (such as HTTP and SMTP), as well as the user functionality and interface
specific to that application. Figure 3.1 illustrates the layers and their implementation.

When a signal is received by your LAN card the signal is processed by the Physical
and Data Link layers, and an Ethernet frame is passed to the operating system (via the
Ethernet network driver). Normally the operating system will process the frame, sending
it to the IP software process, which eventually sends the data to the transport layer
protocol software process, which finally sends the data to your application.

In order to view all the frames received by your computer, we use special packet capture
software, that allows all the Data Link layer frames sent from LAN card to operating
system to be viewed by a normal application (in our case, tcpdump and Wireshark).
The capturing of packets makes a copy of the exact packet received by your computer—
it does not modify the original packet. This allows us to analyse data received by the

File: Steve/Courses/2014/s2/its332/wireshark.tex, r3463
1Previously Wireshark was called Ethereal

15

16 CHAPTER 3. WIRESHARK

Network

Transport

Application

Data Link

Physical

Operating
System

Network
Drivers

LAN Card

Application

Signal is received

Protocol
Layers

Software
 and Hardware

W
ire

sh
ar

k

Capture all packets
sent to OS

Figure 3.1: Capturing packets in the Operating System

computer, in order to perform various network management tasks (such as diagnose
problems, measure performance, identify security leaks).

There are different applications available to capture packets. We will use a combina-
tion of tcpdump and Wireshark. We will capture packets with tcpdump, saving them to
a file, and then view and analyse the saved packets with Wireshark2.

3.2 Capturing with tcpdump

To capture packets, on the command line use tcpdump. It accepts many different options;
here we will show just a small selection.

To capture packets you must specify an INTERFACE, e.g. eth0, eth1 or wlan0. The
following command show how, and will print one line on the terminal for each packet
captured:

$ sudo tcpdump -i INTERFACE

To stop the capture, press Ctrl-C. It will show a summary of the number of packets
captured.

In many cases printing on the terminal is very hard to read, therefore you can write
the packets to a file in a format that can be read by other applications (e.g. Wireshark):

$ sudo tcpdump -i INTERFACE -w FILENAME

2Capturing traffic in Linux is a privileged operation, meaning you must be root, administrator or
sudo to perform a capture. It is good security practice to run as few applications as possible with root
privileges. Therefore it is a good idea to capture packets as root in one step, and then analyse packets
as the normal user in a second step. Although Wireshark can be setup to capture packets as root, we
will use tcpdump instead.

3.3. VIEWING AND ANALYSING PACKETS WITH WIRESHARK 17

This time there is no output, other than saying the capture has started. Again, stop
with Ctrl-C. There should be a file called FILENAME created, which you can now open in
Wireshark.

3.3 Viewing and Analysing Packets with Wireshark

Wireshark is a free, open-source packet analysis application. It should already be install
on lab computers; you may also download and install on your own computer.

Open Wireshark from the Ubuntu menu or by typing wireshark on the command
line. Load the file that was created by tcpdump.

3.3.1 Viewing Captured Traffic

After a packet capture has been loaded, the main Wireshark window shows the captured
packets (see example in Figure 3.2). The window is split into three sections:

1. The top section (packet list) showing the list of captured packets. Each packet has
the following information:

• Packet number (with respect to the total number of packets captured)

• Time the packet is captured, assuming the time the first packet captured is
time 0.0

• The source and destination IP addresses of the packet

• The highest layer protocol associated with the packet

• Summary information about the information carried by the packet

2. The middle section (individual packet details) showing detailed information about
the packet selected in the top section. This is separated based on the layers of the
packet.

3. The bottom section (individual packet bytes) showing the hexadecimal and ASCII
representations of the packet data.

When selecting the 12th packet (in the top section), and then selecting the Internet
Protocol (in the middle section), the values of the IP datagram header fields are shown.
When selecting Transmission Control Protocol (in the middle section), the bottom section
shows the TCP header bytes (in hexadecimal and ASCII).

3.3.2 Analysis and Statistics

Wireshark has many in-built statistics that allow you to analyse the captured packets.
This is very useful, especially if you have many packets captured (1000’s to millions). You
should explore (that is, view them and try to understand what they show) the following
from the Statistics menu:

• Summary

http://www.wireshark.org

18 CHAPTER 3. WIRESHARK

Figure 3.2: Main window of Wireshark

3.3. VIEWING AND ANALYSING PACKETS WITH WIRESHARK 19

• Protocol Hierarchy

• Conversations

• Flow Graph

• HTTP

• Packet Length

• TCP Stream Graph

3.3.3 Filters

The example used above was for a small trace of less than 100 packets captured over 10
seconds. When capturing over a long time period (and hence thousands or hundreds of
thousands of packets), it is often desirable to investigate a selected portion of the packets
(for example, packets between certain pairs of hosts, or using a particular protocol).
Hence filters can be applied during the packet capture (such that only packets that meet
the specified criteria are captured - called capture filters) or after the capture (such that
analysis is only performed on packets that meet the specified criteria - called display
filters). In this course there is no reason for you to use capture filters, instead you can
use display filters.

Display filters are used mainly to view certain types of packets. They make analyzing
the data easier. One place you can enter a display filter is just above the top (packet
list) section. You can either type in the filter and press Apply or create the filter using
the Expression command. Some example filters are given below.

The following filter can be used to display only packets that have source or destination
IP address of 10.10.1.171

ip.addr==10.10.1.171

The next filter can be used to display only packets that have IP address of 10.10.1.127
and do not have a TCP port address of 8080.

ip.addr==10.10.1.127 && !tcp.port==8080

The next filter displays only ICMP packets.

icmp

The next filter displays only packets exchanged with a web server (assuming the web
server is using port 80).

tcp.port==80

Table 3.1 summarises some general filters you may use in the lab, while Table 3.2 gives
some filters when looking for IEEE 802.11 (WiFi) packets. Note that the examples use
demonstrate different conditions (==, !=, . . .) and address formats (e.g. 10.10.6.0/24
for a subnet). Further details of the display filter language and where it can be applied can
be found in the Wireshark manual. Specifically, the display filter reference lists all filters,
including: Ethernet, IP, TCP, HTTP, Wireless LAN and Wireless LAN Management.

http://www.wireshark.org
http://www.wireshark.org/docs/dfref/
http://www.wireshark.org/docs/dfref/e/eth.html
http://www.wireshark.org/docs/dfref/i/ip.html
http://www.wireshark.org/docs/dfref/t/tcp.html
http://www.wireshark.org/docs/dfref/h/http.html
http://www.wireshark.org/docs/dfref/w/wlan.html
http://www.wireshark.org/docs/dfref/w/wlan_mgt.html

20 CHAPTER 3. WIRESHARK

Task Filter Example

IP address, source or dest. ip.addr ip.addr==10.10.6.210

IP address, source only ip.src ip.src!=10.10.6.210

IP address, dest. only ip.dst ip.dst==10.10.6.0/24

Ethernet address eth.addr eth.addr==00:23:69:3a:f4:7d

TCP (or UDP) port tcp.port tcp.port==80

UDP (or TCP) dest. port udp.dstport udp.dstport<100

Show packets that use a protocol http

particular protocol icmp

bootp

dns

HTTP request http.request http.request

HTTP POST request http.request.method http.request.method==POST

Table 3.1: Common Wireshark Display Filters

Task Filter Example

WLAN frames wlan wlan

Address wlan.addr wlan.addr==00:26:5e:8e:e4:95

Transmitter wlan.ta wlan.ta==00:26:5e:8e:e4:95

Src, Dst. wlan.srcaddr wlan.srcaddr==00:26:5e:8e:e4:95

Channel wlan.channel wlan.channel==6

Frequency wlan.channel frequency wlan.channel frequency==2412

SSID wlan mgt.ssid wlan mgt.ssid=="wsiit"

Frame Type wlan.fc.type wlan.fc.type==0

Frame Subtype wlan.fc.subtype wlan.fc.type==0

Beacon frame wlan.fc.type==0 &&

wlan.fc.subtype==8

Frame Type Frame Subtype Type, Subtype
Management Assoc. Request 0, 0
Management Assoc. Response 0, 1
Management Reassoc. Request 0, 2
Management Reassoc. Response 0, 3
Management Probe Request 0, 4
Management Probe Response 0, 5
Management Beacon 0, 8
Management Authentication 0, 11
Management Deauthentication 0, 12
Control RTS 1, 11
Control CTS 1, 12
Control Ack 1, 13
Data Data 2, 0

Table 3.2: IEEE 802.11 Wireshark Display Filters

3.4. TASKS 21

3.4 Tasks

You should use tcpdump and Wireshark when you need to understand how a protocol
works or to diagnose a problem for applications in a network. For the following tasks you
should understand the purpose of each of the packets captured. You should illustrate a
message sequence diagram (see Section 1.3.2) as well as important packets captured (see
Section 1.3.3).

Task 3.1. Capture packets when “pinging” another computer. Understand how ping
works from the packet capture.

Task 3.2. Capture packets transferred while browsing a selected website (e.g. a page from
the course website, a search engine home page). Investigate the protocols used in each
packet, the values of the header fields and the packet sizes.

Task 3.3. Explore at least the following features of Wireshark: filters, Flow Graphs
(TCP), statistics, protocol hierarchies.

22 CHAPTER 3. WIRESHARK

3.4. TASKS 23

24 CHAPTER 3. WIRESHARK

Chapter 4

Client/Server Applications

4.1 Clients, Servers and Addressing

Most network applications, including web browsing, email and file downloads, are imple-
mented as client/server applications. For example, web browsing involves a web browser
(client) retrieving web pages from a web server. The client/server model involves the
server listening for new connections and the client initiating new connections. (A connec-
tion is usually needed each time we perform some operation, e.g. transfer a file, download
a web page, send an email). We use IP addresses, as well as ports, to uniquely identify
each connection.

4.1.1 Addresses and Ports

We know that IP addresses are used to identify computers on the Internet. This includes
clients and servers. When sending data between a client and server, the source and
destination IP addresses are carried in the IP datagram (see Figure F.1). These two
addresses (source and destination) uniquely identify the connection between these two
computers.

But what about different application programs (or processes) running on the com-
puters? If you have one web browser connecting to a web server at www.google.com and
a second web browser connected also to www.google.com, then how does your computer
know which IP datagrams are destined for which instance of the web browser?

Client/server applications also use port numbers to identify connections between ap-
plications. Your first web browser instance uses a different port number than your sec-
ond web browser instance. So in fact all communications between client/server appli-
cations can be uniquely identified by both the source/destination IP addresses and the
source/destination port numbers:

For example, connection 1 between browser 1 and web server www.google.com:

Source IP 203.131.209.77

Destination IP 66.249.89.99

Source Port 47984

File: Steve/Courses/2014/s2/its332/apps.tex, r3468

25

www.google.com
www.google.com
www.google.com

26 CHAPTER 4. CLIENT/SERVER APPLICATIONS

Destination Port 80

And connection 2 between browser 2 and www.google.com:

Source IP 203.131.209.77

Destination IP 66.249.89.99

Source Port 48032

Destination Port 80

Note that the two connections between the same computers are uniquely identified,
because the source ports are different.

While the source and destination IP addresses are carried in an IP datagram header,
the source and destination ports are carried in the TCP (or UDP) packet header (see
Figures F.2 and F.3). Therefore every packet we send over the Internet has these four
addresses. (A fifth identifier, the protocol number is also included in the IP datagram.
For example, if TCP is the transport protocol being used, the protocol number field in
the IP header has the value 6, representing TCP. For a list of common protocol numbers
see Appendix F.2.)

4.1.2 Servers

The common structure of most network server applications is as follows:

1. The server is idle, listening (or waiting) for connection from clients on a well known
port .

2. When a server receives and accepts a connection request (e.g. TCP SYN), it creates
a child process to communicate with the client. The child process exchanges data
with the client. When the exchange is finished, the child process is deleted, leaving
only the original parent server process.

3. The server returns to the idle state (step 1).

In this way, a server can typically handle many connections at a time. For example,
the www.google.com web server can handle connections from 1000’s of client hosts at a
time. An important aspect is a well known port . Since the client initiates the connection,
it has to know what is the destination IP address and port number. The client can find
the servers IP address through DNS (e.g. www.google.com maps to 66.249.89.99). It
knows the port number because most common servers use a well known port number.
Some commonly used well known port numbers are listed in Appendix F.2.

4.1.3 Clients

The common structure of most network client applications is as follows:

1. Send a connection request to a server. The client (in fact, the operating system)
chooses an unused port number as the source port, and sends the connection request
to the server.

www.google.com
www.google.com
www.google.com

4.2. WEB BROWSING 27

2. Once connected with the server, the client and server exchange data.

So multiple instances (or processes) of one application can communicate at the same
time—they just use different source port numbers.

4.2 Web Browsing

Everyone knows how to use a web browser. But what about a web server? In this lab you
will gain basic experience in using Apache Web Server. Apache is free (www.apache.org)
and is the most commonly used web server in the Internet.

4.2.1 Server Configuration Files

Apache (and many other Linux servers) are configured via one or more text files. You
set the options in the files, and then restart the server, and then the server will run with
those options.

The main configuration directory for Apache is:

/etc/apache2/

The main configuration file for Apache is:

/etc/apache2/apache2.conf

You can edit these file if you use sudo and your favourite text editor.

$ cd /etc/apache2

$ sudo nano apache2.conf

Other important configuration files are in the directories:

/etc/apache2/conf.d/

/etc/apache2/sites-available/

In this course we do not try to explain all the details of the apache2.conf file. The
default settings are suitable for a basic web server.

An important file specific to the web site is:

/etc/apache2/sites-available/default

This file contains configuration options specific to a site. (You can potentially host
multiple sites on the one Apache server). If you look at the contents of the file, you will
see towards the bottom it “includes” another file:

/etc/apache2/sites-available/student.conf

This is not normally included in default Apache installs. It has been included for this
lab class. If you need to make changes to Apache configuration during the class, it is
recommended to do so in student.conf.

The web server documents (e.g. the HTML pages that are available via the server)
are stored in a base directory :

/var/www/

www.apache.org

28 CHAPTER 4. CLIENT/SERVER APPLICATIONS

By default there is a file called index.html (although it may have been changed/re-
moved my other students).

You can browse to the URL: http://localhost/ to view the web page and test that
your server is working.

You can create any files/directories in the /var/www directory which will then be
accessible by the web server. (Remember you need to use sudo to write to the /var/www

directory).

4.2.2 Controlling the Web Server

You can use the apache2ctl command to start, stop and restart Apache. You must
restart Apache if you want any changes in the configuration files to take effect. The
commands are:

$ sudo apache2ctl restart

$ sudo apache2ctl stop

$ sudo apache2ctl start

If you have made a change to /etc/apache2/apache2.conf, you should restart the
web server for that change to take effect.

4.2.3 Creating Web Pages

Basic web pages are written in HTML. In this course we do not explain the format of
HTML (maybe you have covered it previously) but you should be able to create a basic
web page in HTML using any text editor. With Apache, the web pages are stored in
/var/www, and by default, if you browse to a directory (e.g. http://localhost/) then
Apache will display the index.html file (if it exists).

You should create a simple HTML test page under the directory /var/www/its332/

called index.html. An example page is:

<html>

<head>

<title>Test Page for ITS 332</title>

</head>

<body>

<h1>Test Page for ITS 332</h1>

<p>

This is a test page for ITS 332.

</p>

</body>

</html>

4.2.4 Server Logs

Another important file is the log produced by Apache. Apache logs (records) all requests
for content on this server. The log is a text file:

/var/log/apache2/access.log

The format of this log file is a space separated file with each line showing details of a
single request for a web page on the server. Each line has the following fields:

http://localhost/
http://localhost/

4.2. WEB BROWSING 29

• The IP address of the source

• - (not used)

• The user name of the user who requested the page (only present if HTTP authen-
tication is used, otherwise is -)

• Date and time the request was made

• The GET request, showing the path/file requested

• The HTTP status code sent back to the client (e.g. 200 is OK. See Appendix F.2
for common values)

• The size of the page/object sent back to the client

• The URL of the page that referred the request (e.g. the page that linked to the
requested page)

• The user agent making the request, e.g. an identifier of the web browser

You should not edit the access.log file. Instead use less or tail to display its
contents. less will display the file, page by page:

$ less access.log

The command tail will display the last 10 lines of the file:

$ tail access.log

4.2.5 Basic Authentication

It is common to protect some content on a web server using passwords. There are different
methods of achieving this—here we will illustrate a simple (yet not too secure) method.

First you must create a username/password that Apache will use. Apache stores this
information in a file. In this lab the file is:

/etc/apache2/passwords

The format of the file is a single line for each user, with the username and hashed
value of the password separated by a colon (:). Note that the actual password is not
stored: instead a somewhat secure representation of the password is stored.

To add a new user (with username steve) to the passwords file, use the command
htpasswd:

$ sudo htpasswd /etc/apache2/passwords steve

You will be prompted for a password for the user steve. Enter it, and then the
information will be saved in the passwords file.

If the passwords file does not already exist on your computer, you must use the -c

option to force it to be created.
Now you must configure Apache to use a password on a specific directory. This can be

achieved by editing the file /etc/apache2/sites-available/student.conf. You need
to add commands that inform Apache that access to a particular directory requires a
username/password. An example of the code is:

30 CHAPTER 4. CLIENT/SERVER APPLICATIONS

<Directory "/var/www/its332/protected">

AuthType Basic

AuthName "Restricted Access to ITS332 Files"

AuthUserFile /etc/apache2/passwords

Require user steve

</Directory>

The above example says only the user with username steve (and corresponding pass-
word stored in /etc/apache2/passwords) is allowed to access content in the directory
/var/www/its332/protected.

To test that the above configuration works, you should create a file in the directory
/var/www/its332/protected. Then restart the web server for the changes to take effect.

4.3 Remote Login

Secure shell (ssh) is a protocol for securely logging in to another computer. It is a
replacement for telnet (which was insecure). OpenSSH is a free implementation of a SSH
client and server. Both client and server should be installed on the Ubuntu computers.

Secure shell can be run from the command line using:

$ ssh DESTINATION

where DESTINATION is the IP address or domain name of the computer you want to
connect to.

Optionally, you can include the USERNAME to log in as (otherwise it will default to the
current username in use on the client):

$ ssh DESTINATION -l USERNAME

You will be prompted for the password of that user on the server. (The first time you
log in you may also be prompted about unknown authentication—enter Yes to continue).

Once you have logged in, you can run commands on the server. That is, it is the same
as if you are using the command line on the server.

You can log out using the exit command.

4.4 Tasks

In the following tasks you should record notes of the main changes made. When perform-
ing tests you should capture packets using Wireshark, recording the packet exchange with
a message sequence diagram (see Section 1.3.2) as well as important packets captured
(see Section 1.3.3).

Task 4.1. Create several example files for your Apache web server to serve. Configure
your web server, and then ask a friend to test your web server by accessing the files.
Capture the packets and observe the log file.

Task 4.2. Configure authentication for a specific directory on your web server. Test,
capture packets and observe the log file.

Task 4.3. Login to another computer in the lab, capture and investigate the data ex-
changed.

4.4. TASKS 31

32 CHAPTER 4. CLIENT/SERVER APPLICATIONS

Chapter 5

Networking Tools

This lab will introduce you to important software tools for managing computer networks.
It will also give you an opportunity to become familiar with the ICT Networking Labora-
tory room, e.g. the computers, operating systems and network equipment. The software
tools you learn in this lab will be used in the remaining labs in the course.

5.1 Operating Systems and Tool Interfaces

When configuring and managing a computer network, or diagnosing problems in a net-
work, you need to use the correct tools for the task. Most often these tools are software
applications. There are various tools available on most computers that can be used to
support common networking tasks including:

• Viewing and changing the configuration of your computer’s network interface, such
as addresses and other protocol parameters.

• Testing your computer’s network connectivity, such as ability to communicate with
other computers and statistics of the communication.

• View and analyse traffic sent/received by your computer, as well as other computers
on a network.

The tools that can be used to manage the network vary on different operating sys-
tems. For example, Microsoft Windows has different programs than Unix variants such
as Ubuntu and Apple MAC OS. (And indeed, the programs may be different between
versions: Windows 7 may be different from Windows Vista, and Ubuntu Linux different
from RedHat Linux). Combined with this, many operating systems will have two dif-
ferent interfaces to the same tool: a graphical user interface (GUI) and a command line
(text) interface.

Although the programs may be different (including interface and options), the ma-
jority of them provide similar level of functionality. Therefore once you learn the func-
tionality using one tool, it will not be too hard for you to perform the same functionality
in another operating system.

File: Steve/Courses/2014/s2/its332/tools.tex, r3455

33

34 CHAPTER 5. NETWORKING TOOLS

For our lab classes, we will use Ubuntu Linux, for the reasons outlined in Chapter 2.
We will show examples and expect you to use the command line interface on most oc-
casions. This is because once you know the command line interface, it is very easy to
perform the same operations in the GUI (however, vice versa is not true: if you learn the
GUI, it may be hard to understand the options of the command line interface). Also note
that some network equipment is managed by a command line interface: e.g. you may log
on to a router or switch and set the configuration via the command line interface only.

5.2 Viewing Network Interface Information

Your computer connects to the LAN via one of its Network Interface Cards (NIC) (see
Appendix B for details). In the Networking Lab, each computer has three Fast Ethernet
NICs, and by default one of the NICs is connected to a Fast Ethernet switch (in the
switching cabinet in the corner of the room). Almost all operating systems allow the user
to view information about the current NIC connection, including:

• MAC (or hardware) address

• IP address and subnet mask

• Addresses of other important nodes (servers) on the network

• Traffic sent/received by the NIC

Operating systems often allow administrator users to modify some of the above infor-
mation as well. The main command to view and edit the network interface information
is ifconfig.

To view the information for all interfaces:

$ ifconfig

The operating system assigns names to each interface, such as eth0 for on Ethernet
NIC and eth1 for another. As the name/number assigned to an interface is automatic,
you cannot assume the same scheme is used in different computers, nor can you assume
it will be the same each time you start the same computer.

The special loopback interface (which isn’t a real physical interface, but a virtual
interface implemented in software inside the OS) is often given the name lo.

To view the details of a specific interface, such as eth0 :

$ ifconfig eth0

5.3 Viewing Ethernet Interface Details

ifconfig shows summary information for your different network interfaces. If you want
to see more details of your Ethernet (wired LAN) interfaces you can use ethtool. This
shows information such as data rates supported, current data rate in use and whether
the link is up or not. It also allows you to set parameters, such as whether or not the
NIC will perform some operations that normally would be performed by the OS.

To view information about a specific Ethernet interface, such as eth0 :

5.4. TESTING NETWORK CONNECTIVITY 35

$ ethtool eth0

Some of the values to look at if your link is not working as expected include: Link
Detected, Speed and Duplex. If the link is not detected it suggests the cable is not plugged
in correctly or there is a problem with the hardware. If the link is detected but the speed
and duplex are not as expected (e.g. they are 10 Mb/s and Half-Duplex) it may mean a
problem with the cable or NIC.

Normally the default values are appropriate. However you may manually set values
using the -s option:

$ sudo ethtool -s eth0 speed 100 duplex full

But note that other settings may impact on whether or not your desired settings are
used (for example, with Auto-negotation turned on, the link speed will be negotiated by
the two end points).

Sometimes operations on packets that are typically performed by the operating sys-
tem, such as checking checksums and segmenting packets, are offloaded to the NIC. The
reason is that the NIC can perform these operations much faster than the OS, increasing
the data transfer performance. However when such offloading is performed it may create
confusion for students when capturing packets: conceptually we think the operating sys-
tem segments packets and we would see the individual segments in Wireshark; but with
offloading the segments are not seen because they are performed in the NIC hardware
(which tcpdump/Wireshark cannot see). Therefore it may be beneficial to turn off such
features in a lab.

To view the offloaded features:

$ ethtool -k eth0

To turn offloading features on/off:

$ sudo ethtool -K eth0 gso off

See the man page for ethtool to see the list of features and their short names (e.g.
gso means generic-segmentation-offload).

5.4 Testing Network Connectivity

A basic task for diagnosing the connectivity of a network is to test whether one com-
puter can communicate with another. This is normally performed using the Internet
Control Message Protocol (ICMP). A user application that implements ICMP for testing
connectivity is ping.

ping sends a message from your computer to some destination computer, which then
immediately responds. ping measures the time it takes from sending the message, to
when the response is received. That is, the delay to the destination and back, i.e. the
round trip time (RTT).

The simplest way to use ping is to specify the destination as the first parameter:

$ ping DESTINATION

where DESTINATION is the IP address or domain name of the computer you want to
test connectivity with.

36 CHAPTER 5. NETWORKING TOOLS

You can stop the ping by pressing Ctrl-C, or you can limit the number of messages
sent by ping to COUNT messages using the -c parameter:

$ ping -c COUNT DESTINATION

There are other useful options for ping: read the manual!

5.4.1 ping at SIIT

ping is a very simple, but useful tool to diagnosing network problems. However, ping
(and more generally, ICMP messages) can be used to cause problems in a network. For
example, a malicious user may perform a security attack on a network by sending many
ICMP messages to a router (making the router too busy to handle normal traffic, thereby
restricting use of the network). Therefore, some organisations decide to not allow ICMP
messages into and/or out of a network. SIIT does this: from inside the lab you cannot
ping a computer outside on the Internet (e.g. try to ping http://www.google.com/).
This is done for good reasons by the SIIT Network Administrators, however makes it
difficult to demonstrate ping and other ICMP-based tools in this lab!

In addition to a network administrator blocking ICMP from leaving the network, some
organisations may block ICMP from entering a network, and more specifically, block a
particular computer from responding to ICMP messages. For example, the web server
www.fakewebserver.com may be configured to not respond to ICMP messages, therefore
your ping to such a domain would get no response.

Luckily for us, there are free web sites that allow us to use ping from the website to
any computer that responds to ICMP messages. Note that when using these websites
the source of the ICMP message is not your computer, but is the web server of the site
or a router/server selected from the site.

There is an excellent list of free web-based ping (and other) tools at: http://www.

bgp4.net/wiki/doku.php?id=tools:ipv4_ping. Several you should try include:

• Qwest Looking Glass Asia (http://stat.qwest.net/looking_glass_asia.html)
- source is from Hong Kong, Singapore, Sydney or Tokyo

• Cogent Looking Glass (http://cogentco.com/htdocs/glass.php) - source from
cities in North America and Europe

• Telia Looking Glass (http://lg.telia.net/) - sources from cities in Europe

• Carnegie Mellon University Network Operations (http://www.net.cmu.edu/cgi-bin/
netops.cgi) - source from US

5.5 Testing a Route

Another useful network connectivity test is to determine the path (or route) that a
message takes. That is, what routers does the message pass via on the way to the
destination. As with ping, ICMP messages are sent to determine this. An application
that implements this in Ubuntu is tracepath1. Like ping, an ICMP message is sent to

1Some Unix distributions use the application traceroute to perform the same functionality as
tracepath. In fact, you will see many web sites refer to traceroute instead of tracepath.

http://www.google.com/
http://www.bgp4.net/wiki/doku.php?id=tools:ipv4_ping
http://www.bgp4.net/wiki/doku.php?id=tools:ipv4_ping
http://stat.qwest.net/looking_glass_asia.html
http://cogentco.com/htdocs/glass.php
http://lg.telia.net/
http://www.net.cmu.edu/cgi-bin/netops.cgi
http://www.net.cmu.edu/cgi-bin/netops.cgi

5.6. CONVERTING BETWEEN DOMAIN NAMES AND IP ADDRESSES 37

the destination and returned, but with tracepath the set of routers along the way also
send a response to the source.

The tracepath application can be used by giving a destination IP address or domain
name as a parameter:

$ tracepath DESTINATION

As tracepath uses ICMP, it suffers the same drawbacks on SIIT’s network as ping.
In some cases, you may get a no reply message from a router. But again, you can use the
free web-based applications in Section 5.4.1 to demonstrate tracepath (often referred to
as traceroute).

5.6 Converting Between Domain Names and IP Ad-

dresses

We know that the Domain Name Service (DNS) is used for mapping domain names (user-
friendly addresses) into IP addresses (computer-readable addreses). It is also possible to
do the opposite, often referred to as reverse DNS : map IP addresses to the corresponding
domain name.

There are several tools for using DNS (or reverse DNS) in Ubuntu, all using slightly
different approaches, and producing different output. In this lab we will use nslookup2.
The basic use of the tools work in the same way: give a domain name as a parameter,
and the corresponding IP address will be returned; or give an IP address as a parameter,
and the corresponding domain name will be returned.

$ nslookup DOMAIN # returns IP address

$ nslookup IPADDRESS # returns domain name

By default, nslookup will try to first use your local DNS server to retrieve the infor-
mation. How do you know what your local DNS server is? On Ubuntu, the IP address
of one or more local DNS servers are stored in the file resolv.conf under the directory
/etc/. Consider the output of the following resolv.conf file:

$ cat /etc/resolv.conf

nameserver 10.10.10.9

nameserver 192.168.20.103

There are two local DNS servers configured: 10.10.10.9 and 192.168.20.103. Re-
quests will be sent to the first DNS server, and if no response, then the second will be
tried.

If you want to retrieve the information from a specific DNS server (such as ns.siit.
tu.ac.th or ns1.sprintlink.net) then you need to give an additional option:

$ nslookup DOMAIN DNSSERVER

Note that Linux typically uses (at least) two naming services: the common Internet
naming service DNS, as well as a simple file that lists a set of names and corresponding
addresses. This is called the hosts file. See Section 5.10 for further information.

2The other tools are called dig and host—you can try them yourself to see the difference

ns.siit.tu.ac.th
ns.siit.tu.ac.th
ns1.sprintlink.net

38 CHAPTER 5. NETWORKING TOOLS

5.7 Viewing the Routing Table

IP uses routing table to determine where to send datagrams. This applies to end hosts
(like PCs), as well as routers, however a routing table on a host is typically quite simple,
since all packets are often sent to a local (default) router.

You can view your routing table using the route command:

$ route -n

The -n option means the output will contain the numerical IP addresses (rather than
the default domain names).

By default, route shows the main routing table. However, the operating system also
maintains a cache of routing entries, which are based on where previous packets have
been sent. When IP has a packet to send, it first checks the routing cache for an entry,
and then (if no entry exists in the cache) uses the main routing table. You can view the
routing cache using the -C option:

$ route -n -C

The routing cache shows the Gateway used for particular Source and Destination
pairs.

In a later lab (Chapter 7) we will use route to modify the routing tables (like adding
a new route).

5.8 Converting IP Addresses to Hardware Addresses

Remember that IP addresses are logical addresses. For a computer to send data to
another computer on the same LAN/WAN they must use hardware (or MAC) addresses.
For example, if computer A wants to send an IP datagram to computer B (on the same
network as A) with IP address 192.168.1.3, then computer A must know the hardware
address of computer B. Hence, the Address Resolution Protocol (ARP) is used to find
the corresponding hardware addresses for a given IP address.

Although we don’t yet cover in detail how ARP works, we can view the information
ARP has in your computer using the application arp. Running arp will return a ta-
ble (called the ARP table or ARP cache) of IP addresses and corresponding hardware
addresses that your computer currently knows about:

$ arp -n

ARP automatically updates the table with new entries for you. However, you can
also use arp to delete entries from your ARP table and manually add new entries.

5.9 Network Statistics

A tool that allows you to view many different network statistics is netstat. For example,
you can view interface statistics (similar to ifconfig), routing table statistics (same as
route), connection statistics and TCP/IP packet statistics. Lets look at how to view the
last two.

First, you can view the active TCP connections:

5.10. VIEWING MORE NETWORK INFORMATION: USEFUL FILES 39

$ netstat -n -t

You can also view summary TCP/IP statistics:

$ netstat -s

5.10 Viewing More Network Information: Useful Files

Some additional networking information about your computer can be found in various
files on your computer. An important directory that contains a lot of configuration details
for your operating system is the /etc directory. Some useful files include:

/etc/hosts Set a list of local domain names and corresponding IP addresses. Used in
addition to DNS. Normally this would be used to give a name to your computer,
as well as other computers on your network.

/etc/resolv.conf Indicates the local DNS server for this computer.

/etc/network/interfaces Stores information about your computers’ network inter-
faces.

/etc/services List of port numbers and corresponding servers

5.11 Automatic IP Address Configuration

5.11.1 How Does DHCP Work?

When an operating system is installed on a computer and the computer first setup (by,
for example, the network administrator), the IP address and other relevant network
information (such as DNS servers, subnet mask) can be manually entered. In Ubuntu,
commands like ifconfig can be used to do this.

But with manual configuration, if any network information changes, the network ad-
ministrator must then go to each computer to make the changes. With the SIIT Bangkadi
network of 300 or more computers, the task of manually configuring each computer if,
for example, the DNS server IP address changes, would be enormous!

Therefore, in practice there are ways to automatically configure a computers network
information. The most used method is called Dynamic Host Configuration Protocol or
DHCP. The basic process using DHCP is as follows:

1. One computer on the network is configured as a DHCP Server . This contains infor-
mation about the possible IP addresses that can be allocated to other computers,
and the DNS servers to be used. Usually, the DHCP Server is a router on the
network.

2. All the hosts in the network are configured to use a DHCP Client . When the
computers are first setup by the network administrator, no information about IP
address, DNS server is given.

40 CHAPTER 5. NETWORKING TOOLS

3. When a host boots, the DHCP Client broadcasts a request for an IP address. In
other words the host sends a message to everyone else on the network saying: “I
need an IP address (and other information)”.

4. The DHCP Server is the only computer that responds: the DHCP Server selects
an IP address for the host and sends it, including the network DNS server, subnet
mask etc. to the host.

5. The DHCP Client configures its network interface using the information sent to it
by the DHCP Server. The host now has an IP address.

The information assigned to the host by the DHCP Server has a lifetime. This is called
a lease—for example, the host “leases” an IP address for 1 day. Before the lease expires,
the DHCP Client will typically renew the lease. In this way, if a change of configuration
information (such as DNS server) is needed, the network adminsitrator simply modifies
the DHCP Server—the DHCP Clients in each host will retrieve the updated information
from the DHCP Server.

Many computers now use DHCP to obtain an IP address, so the computer user does
not need to worry about configuring their own IP address. For example, when you
connect to the SIIT network with your laptop, typically you do not configure an IP
address—DHCP is used.

5.11.2 Viewing Interface Information

By default, DHCP is used on the PCs in the Network Lab. We saw in Section 5.2 how to
view the current network interface configuration using ifconfig (that is, the IP address
after DHCP has obtained it). However the file /etc/network/interfaces indicates
whether a dynamic (DHCP) IP address should be used, or some static (configured by the
user) IP address should be used when the computer starts.

The format of a DHCP configured interface in /etc/network/interfaces is:

auto INTERFACE

iface INTERFACE inet dhcp

The interface labels (eth0, eth1, eth2, . . .) may vary across computers and even
when you reboot. That is, now one network card may be referred to by eth0 and after
re-booting the same card may be referred to by eth1.

To disable the use of DHCP and use static addresses, you can edit the file and change
the iface section:

iface INTERFACE inet static

address IPADDRESS

netmask SUBNETMASK

5.11.3 Viewing DHCP Information

Now lets look at some DHCP information. The current DHCP leases are stored in
/var/lib/dhcp/dhclient.X.lease where X is the interface identifier (e.g. eth2 or eth3).
Note that the lease file may contain more than one entry—the last entry is the lease cur-
rently in use.

5.12. TASKS 41

One way to refresh a leased IP address is to refresh the interface. Another is to use
dhclient, where you can optionally specifiy the interface to renew/refresh th lease for:

$ dhclient

5.11.4 Setting a Static IP Address

We may not always want to use a dynamic (DHCP assigned) IP address. In the lab, the
best way to assign a static IP address is using ifconfig. We saw before that ifconfig

can be used for viewing interface configuration information—it can also be used for setting
interface configuration information. An example to set the IP address 10.20.30.40 (with
subnet mask 255.0.0.0) to interface eth1 is:

$ ifconfig eth1 10.20.30.40 netmask 255.0.0.0

You can also use ifconfig to enable/disable interfaces by adding up/down to the end
of the command (in Linux terminology this is referred to as “bring an interface up or
down”). For example, to turn off/disable/bring down the interface:

$ ifconfig eth1 down

And to turn on the interface (add setting a different IP address at the same time):

$ ifconfig eth1 10.20.30.41 netmask 255.0.0.0 up

5.12 Tasks

Task 5.1. View the configuration details, including addresses, of your computers network
interfaces.

Task 5.2. Test the network connectivity between your computer and several other com-
puters: another PC in the lab; the SIIT webserver; external web servers.

Task 5.3. Using one of the publicly available websites for ping/traceroute, test the con-
nectivity to several external websites.

Task 5.4. Trace the path between several pairs of source/destination nodes.

Task 5.5. Find the IP addresses of several web servers (domains), using several different
DNS servers.

Task 5.6. Try a reverse DNS lookup.

Task 5.7. View your routing table and routing cache.

Task 5.8. View your ARP cache. Find the hardware address of another computer in the
lab using ARP.

Task 5.9. View the active TCP connections that your computer has, especially after you
visited a website.

Task 5.10. View and browse through the summary network statistics.

Task 5.11. View the DHCP lease information for your computer, and see how it changes
as you renew/refresh the lease.

42 CHAPTER 5. NETWORKING TOOLS

5.12. TASKS 43

44 CHAPTER 5. NETWORKING TOOLS

Chapter 6

Layer 2 Networking

The simplest computer network that can be created connects two computers directly
together via cable (that is, a peer-to-peer network). Creating such a network will intro-
duce you to the methods for physically connecting computers (including cable types),
and configuring interfaces for computers to be on the same network.

A more useful, and much more common network is a switched Ethernet LAN, where
multiple computers are connected to a switch. You will setup your own LAN, configuring
all computers on the network.

This lab concentrates on Layer 2 network technologies, in particular Ethernet. The
next lab will look at Layer 3 networks, that is, joining two or more Layer 2 networks
together using IP routers.

6.1 Peer-to-Peer Networks

6.1.1 Background

The simplest network is one that connects two computers together, usually directly via
a cable. This requires both computers to use the same Layer 2 network technology, with
common options being Ethernet, a serial link, Wireless LAN or Bluetooth.

Figure 6.1: Layer 2 Peer-to-peer Network

Connecting two computers with a cable (e.g. Ethernet or serial link) is mainly useful
for simple demonstrations (like this lab), simple, high speed file transfer and for trou-
bleshooting. As an example of troubleshooting, if two computers are connected together

File: Steve/Courses/2014/s2/its332/layer2.tex, r3455

45

46 CHAPTER 6. LAYER 2 NETWORKING

and can communicate with each other then that usually means the LAN cards and net-
work software work correctly. Therefore there are other problems if one of the computers
cannot successfully communicate when connected to a switched LAN or internet.

Connecting two computers via wireless technologies (e.g. Wireless LAN, Bluetooth,
infrared) is commony used for temporary and/or spontaneous sharing of data.

As we will see, connecting two computers (and configuring them to communicate with
each other) is quite simple. However, the applications are rather limited as you cannot
communicate with anyone else.

Note 1. (Ethernet, Fast Ethernet, Gigabit Ethernet) Although there are different vari-
ants of IEEE 802.3, including Ethernet (10Mb/s), Fast Ethernet (100Mb/s) and Gigabit
Ethernet (1Gb/s), we will often use the word Ethernet in the general sense, that refers to
either of the variants. In fact, the computers in the lab are configured with Fast Ethernet
LAN cards (although can operate at 1Gb/s Ethernet).

Note 2. (Other Types of Peer-To-Peer Networks) You may hear of Peer-to-Peer Net-
works or P2P file sharing to describe many applications and services in use on the Internet
today. Although they are based on similar principles (all nodes are equal, no central point
of control), the technologies and protocols used are not the same. In this lab we are only
dealing with the method of connecting two computer together: any type of application can
run on the two computers (Email, Web server, P2P File sharing), although may have
limited use with only two people involved.

6.1.2 Ethernet Cabling

Ethernet, in particular Fast Ethernet, is a full-duplex communications protocol. That is,
device A can transmit to device B at the same time as device A is receiving from device
B. This is performed by having a set of separate wires for transmit and receive. So in an
Ethernet cable there are many individual wires, one set that are used for transmitting
and one set for receiving.

In Ethernet networks, there are two types of devices:

1. End-user devices, such as computers and peripherals (even routers, which from a
Layer 2 or Ethernet perspective, are just hosts on the Ethernet).

2. Network devices, such as switches and hubs.

To be able to transmit from one device and receive at the other device, the ordering
of the transmit and receive sets of wires in the cable must be correct. The socket into
which you plug the Ethernet cable must be wired correctly as well. The wiring in sockets
of end-user devices is different than that in network devices. A simple way to understand
this is as follows.

Lets assume the transmit wires in the socket of an end-user device (e.g. computer
LAN card) are at the top, and receive wires at the bottom, as illustrated in Figure 6.2.
And the opposite applies for the socket of a network device (e.g. switch).

Of course, the transmit wires in the socket of one device must connect to the receive
wires in the socket of the other device. Hence to connect an end-user device to a network
device, the wires in the Ethernet cable must go straight-through to the other side, as
shown in Figure 6.3.

6.1. PEER-TO-PEER NETWORKS 47

End-user device
(e.g. computer)

Network device
(e.g. switch)

Transmit

TransmitReceive

Receive

Socket Socket

Figure 6.2: Example ordering of Ethernet sockets on computer and switch

End-user device
(e.g. computer)

Network device
(e.g. switch)

Transmit

TransmitReceive

Receive
Ethernet Straight-through Cable

Figure 6.3: Ethernet straight-through cable connection

48 CHAPTER 6. LAYER 2 NETWORKING

However, if we now want to connect an end-user device to another end-user device
(such as in the peer-to-peer network, where we connect one computer directly to another),
then the wires in the Ethernet cable must cross-over, as shown in Figure 6.4.

End-user device
(e.g. computer)

End-user device
(e.g. computer)

Transmit Transmit

Receive Receive

Ethernet Cross-over Cable

Figure 6.4: Ethernet cross-over cable connection

In summary, there are two different types of Ethernet cables for connecting devices:

Straight-through cable Connects an end-user device to a network device. For exam-
ple: PC to switch; switch to router.

Cross-over cable Connects an end-user device to another end-user device. For exam-
ple: PC to PC; PC to router.

How do you tell the difference between a straight-through and cross-over cable? From
the colours of the individual wires that you see at the end points of the cables. For a
straight-through cable, if you look at the end-points from the same viewpoint, the colours
will be in the same order. For a cross-over cable, the colours will be in a different order.

6.2 Switched Network

Connecting only two computers has very limited use. Usually a user or organisation has
more than two computers to connect together. There are different topologies that can
be used to connect computers together, although today the most common is a star-based
topology, where the centre of the star is a Layer 2 Switch. Hence, referred to as a switched
network.

In a switched network, all end-user devices have individual cables to the central switch.
In most cases, the connection to the switch is full-duplex. To transmit from one end-user
device to another, the transmission goes via the switch. Of course, often users want to
communicate with other users not on the same switched network. Hence the switch can
also be connected to another switch to connect to another switched network, or to a
router, to connect to any network.

6.3. TASKS 49

Figure 6.5: Layer 2 Switched Network

6.3 Tasks

On the following tasks you should record the design of the network, record relevant results
from the tests, and demonstrate your network to the instructor.

Task 6.1. Create and test a peer-to-peer network between two computers in the lab.

Task 6.2. Create and test a switched network with 4 PCs and one switch.

50 CHAPTER 6. LAYER 2 NETWORKING

6.3. TASKS 51

52 CHAPTER 6. LAYER 2 NETWORKING

Chapter 7

Layer 3 Networking

Although Ethernet is a common technology for layer 2 networks, in particular LANs, there
are in fact many different technologies for layer 2 networks, including for WANs: Ethernet,
ADSL, SDH, Wireless LAN, Bluetooth, Token Ring, Frame Relay, ATM, Therefore
to allow a user to communicate with any other user, indepdenent of the LAN/WAN
technology, layer 3 networking is used. Today, the Internet Protocol (IP) is the most
commonly used layer 3 network technology. At layer 3, routers are used to connect
LANs and WANs together, e.g. connect an Ethernet LAN to a SDH WAN; connect two
Ethernet LANs together; connect a ATM WAN to a Frame Relay WAN; and so on.

In this lab you will create layer 3 network. That is, you will connect different LAN-
s/WANs together using routers. The main tasks will be configuring the hosts and routers
to use the appropriate addresses and routing tables.

7.1 Routers

An internet is a collection of many different computer networks (LANs and WANs)
connected together. Routers are devices that connect these individual networks together.

A router has two main roles:

1. Routing. This is the process of discovering suitable routes throughout an internet.
This is normally done automatically (using a routing protocol) but routes can be
created manually (we will see how in this lab). Think of a route as the path through
the internet.

2. Forwarding. This is the process undertaken when a router receives an IP datagram.
The router looks at the destination IP address in the datagram, and from the routers
routing table, determines what is the next router (or host) to send the datagram
to in order to reach the final destination. Then the router sends the datagram.

7.1.1 Routers and Hosts

What is the difference between a host (e.g. your PC) and router?

File: Steve/Courses/2014/s2/its332/layer3.tex, r3455

53

54 CHAPTER 7. LAYER 3 NETWORKING

• When a host receives an IP datagram destined to itself, then the host will process
the datagram by sending it to the relevant application (e.g. web browser). If the host
receives an IP datagram destined to an IP address other than itself, the datagram
will be dropped.

• In the case of receiving an IP datagram destined to itself, the router will do the
same as the host. But when a router receives an IP datagram destined to another
IP address, the router will look up its routing tables and forward the datagram to
another computer (host or router).

A simple example: an IP datagram with destination address 200.0.0.3 is received
at a computer with IP address 192.168.1.1. If the computer is a host, the datagram
will be dropped (discarded). If the computer is a router, the datagram will be forwarded
to the next router in the path. In summary, a router will forward datagrams; a host will
not forward datagrams.

A router knows where to forward an IP datagram based on its routing tables. The
routing tables, in their simplest form, say: if a datagram is destined to network X, then
send it to the next router Y. In fact, both a router and a host have a routing table. The
table in the router may be quite complex (with many rows or entries), whereas in a host
it is usually just a single entry specifying the default router (or as we have seen, default
gateway—gateway and router are the same in this context).

For a router, the routing tables are created using routing protocols. The routing pro-
tocols are implemented as software applications. During network operation, the routers
in the internet communicate with each other to discover the best paths through the in-
ternet. Alternatively, the routing tables can be created manually by adding entries to
the routing table.

Figure 7.1 summarises the differences between routers and hosts.

7.1.2 Enabling Routing

There is only a small difference in functionality between a router and host (however, for
a real network, there may be big differences in implementation and performance: for
example, a commercial router often has hardware and an operating system dedicated to
the task of routing, whereas a PC uses general purpose hardware and operating systems).
In practice it is easy to make a host become a router. That is, most PCs can be configured
as a router if:

1. They have two or more network interfaces (as the PCs in the Lab do)

2. The operating system is configured to enable forwarding

On Ubuntu Linux, by default forwarding is off. The status of forwarding is maintained
by the Linux kernel and is given in the following file—a 0 indicates off while a 1 indicates
on:

/proc/sys/net/ipv4/ip_forward

To change the value you can edit the file (if you have permissions) or use sysctl as
follows:

$ sysctl net.ipv4.ip_forward=1

Similarly you can use sysctl to turn off forwarding.

7.1. ROUTERS 55

Host Router

Source of packets

Destination of packets

Forwards packets

Routing table

Routing protocol

Network interfaces Usually 1 2 or more

Yes

Yes

No Yes

Not common

Not common

Yes
Usually simple;
2 or 3 entries

Yes
Usually complex;
100's or 1000's of entries

Sometimes
If so, simple protocol

Yes
Complex (BGP, OSPF, RIP)

Figure 7.1: Comparison of Router and Host

7.1.3 Editing the Routing Table

In large internets, routing protocols are used to automatically create the routing tables.
In small internets, we can manually configure the routes. To do this, we must add routes
to the routing tables.

In Ubuntu, the route command shows the current routing table. Usually, for a host
there will be a single entry like:

Destination Gateway Genmask Flags Metric Ref Use Iface

default 192.168.1.1 0.0.0.0 UG 0 0 0 eth1

This says, for all IP datagrams that are destined outside of this network, send them
to the default router (192.168.1.1).

And for a simple, two interface router, there may be more entries to specify the routes
to different networks. In order to add a route, you can use the add option:

$ route add -net NETWORKADDRESS netmask SUBNETMASK gw NEXTROUTER dev INTERFACE

where:

• NETWORKADDRESS is the IP address representing the destination network, e.g. 192.168.1.0

• SUBNETMASK is the subnet mask for the destination network, e.g. 255.255.255.0

• NEXTROUTER is the IP address next router in the path to the destination network,
e.g. 192.168.3.1

56 CHAPTER 7. LAYER 3 NETWORKING

• INTERFACE is the network interface to send the datagram on, e.g. eth2

Similarly, you can delete an entry with:

$ route del -net NETWORKADDRESS netmask SUBNETMASK

7.2 Tasks

On the following tasks you should record the design of the network, record relevant results
from the tests, and demonstrate your network to the instructor.

Task 7.1. Create and test an internet that has two subnets: one subnet has two hosts
connected via an Ethernet switch; the other subnet has a single host.

Task 7.2. Create and test an internet that has three subnets: two subnets have a single
host; the third subnet simply connects two routers together.

Task 7.3. Create and test an internet that joins your three subnets from Task 7.2 with
another groups three subnets.

7.2. TASKS 57

58 CHAPTER 7. LAYER 3 NETWORKING

Chapter 8

Firewalls

This lab will introduce you to a common security mechanism used in networks: firewalls .
A firewall is a device (usually implemented in software) that controls what traffic can enter
and leave a network. If an organisation wants to protect there network, then a firewall
between their internal network and all external networks (“the rest of the Internet”)
will be configured to inspect the traffic entering/leaving the network, and only allow the
traffic that meets the organisations policies. We will setup our own simple firewall—in
practice, real firewalls will be much more complex, and often require specialised network
equipment.

8.1 Understanding Firewalls

Firewalls are network devices that control what packets enter and leave a computer
network. Typically a company (and more recently, a home user) will use a firewall to
stop people outside the company network (that is, everyone on the external Internet) from
accessing computers and resources inside the company network (e.g. the SIIT network).
For example:

• Stop people on the Internet from connecting to and accessing files on a SIIT com-
puter

• Stop people on the Internet sending viruses and spam to computers in the SIIT
network

The firewall can also be used to control what computers inside the network access.
For example:

• Stop SIIT users from access inappropriate web sites on the Internet

• Stop SIIT users from sending ping commands to routers on the Internet

The firewall is usually a specialised router that acts as a gateway between the local
network and the outside networks. That is, all traffic goes through the firewall. However,
in this lab, we will see that we can configure the Ubuntu Linux computers to act as a
simple firewall.

File: Steve/Courses/2014/s2/its332/firewalls.tex, r3455

59

60 CHAPTER 8. FIREWALLS

outside inside
21

router (R)

Figure 8.1: An organisation views their network as inside, and all other networks as
outside

8.1.1 How Do Firewalls Work?

A gateway router (that is, the router between the inside and outside networks) normally
receives an IP packet, looks at the destination IP address, looks up its routing table to
determine where to sends the packet, and sends (or forwards) the packet.

A firewall is hardware or software running on the gateway router that provides addi-
tional functionality:

1. When the IP packet is received, the firewall looks at the packet and compares it to
a set of rules stored in a firewall table. An example rule may be: “Drop all packets
destined to IP address 64.233.189.104”

2. When a rule matches, the corresponding action is taken. The action is usually
DROP (discard, do not let the packet through) or ACCEPT (forward, let the packet
through). In the above rule, if the IP destination address was 64.233.189.104,
then the packet would be dropped.

3. If the packet is not dropped, then the gateway router follows its normal procedures
(e.g. look up routing table and send the packet).

8.1.2 Firewall Rules

The rules used by firewalls are the most important aspect. They can be very simple (e.g.
“drop all packets destined to the local network”) or very complex (e.g. 1000’s of rules).

Packet-filtering firewalls usually create the rules using the following information:

• Packet match conditions:

– IP source address

– IP destination address

– TCP/UDP source port number

– TCP/UDP destination port number

– Other IP/TCP/UDP header fields

• Direction of traffic:

– Is the packet coming from outside (to inside) or is it coming from inside (to
outside)

• Actions:

8.1. UNDERSTANDING FIREWALLS 61

– ACCEPT or DROP

Using the above conditions, a reasonably good firewall can be built that can filter
packets based on where the packets are coming from, where they are going to, and what
applications are being used (remember, if a destination port number is 80, we can assume
that a web browsing application is being used—if SIIT wanted to stop all web browsing,
then they could drop all packets destined to port 80).

More complex firewalls (application-level firewalls) can be created by not only looking
at the TCP/IP packet information, but also looking at the content of the messages. For
example:

• Does the packet contain an email virus or spam?

• Does the packet contain spam?

• Is the web request to an unacceptable server (e.g. www.illegal-site.com)?

Figure 8.2 shows an example set of rules for a firewall (on router R). Each row in
the table specifies a rule. When a packet arrives at R (the firewall) the packet will
be DROPPED if a rule matches. If no rules match, then the packet is ACCEPTED
(forwarded).

R 12 INSIDEOUTSIDE

ARRIVES ON IP IP SOURCE DEST.
INTERFACE SOURCE DEST. PROTOCOL PORT PORT

2 * * TCP * 21
2 * * TCP * 23
1 128.5.0.0 / 16 * TCP * 25
2 * * UDP * 43
2 * * UDP * 69
2 * * TCP * 79

Figure 8.2: Example firewall rules

The example rules specify:

• Block all packets destined to following services (applications) on internal network:
FTP (port 21); TELNET (23); WHOIS (UDP port 43); TFTP (69); FINGER (79).

• Block all packets coming from internal network 128.5.0.0 (subnet mask 255.255.0.0)
and destined to external email server (port 25)

As a result, no-one outside the network could FTP to the inside network. And no-one
inside the network using and address on the network 128.5.0.0 could send an email.

62 CHAPTER 8. FIREWALLS

8.1.3 Firewalls and Servers

Most applications operate in a Client/Server mode, where a Client inside a network
accesses a Server outside the network. Most computers inside the network DO NOT run
servers accessible to the outside network. For example, there is no need for a SIIT staff
or student’s PC to run a web server accessible to someone outside SIIT.

Therefore, it is common for firewalls to be setup that will:

• Allow computers inside the network to access specific services outside the network.
This is done by allowing traffic to pass from inside to outside if it is destined to a
specific port (e.g. port 80 for web traffic).

• Do not allow computers inside the network to access unauthorised servers outside
the network (for example, SIIT may decide that no-one inside can access FTP
servers on the Internet).

• Do not allow any computers outside the network to access any servers inside the
network. The only exceptions are to allow access to dedicated servers (e.g. the SIIT
website).

Although the above cases can become quite complex in practice, very basic rules can
be used to implement a simplified firewall that performs this functionality. You will do
this in the Lab tasks.

8.1.4 Firewalls on Linux: iptables

iptables is a program on Linux that can be used to create a firewall. It allows the user
to create a set of rules. Then when packets are received by the computer, the rules are
processed. The packet is only sent if accepted by the rules.

iptables defines three basic classes of rules (or chains), based on where the packet
is from/going to:

1. INPUT: processed if a packet is destined to this computer (e.g. the destination is
this computer)

2. OUTPUT: processed if a packet is created to be sent by this computer (e.g. this
computer is the source)

3. FORWARD: processed if a packet is to be forwarded by this computer (e.g. the
packet is not destined to or from this computer, but this computer is acting as a
router).

The most common way to use iptables is illustrated below (you need to execute with
super-user privileges using sudo):

$ iptables -A CHAIN [CONDITIONS]

where CHAIN may be: INPUT, OUTPUT or FORWARD.
Some of the optional CONDITIONS are:

8.2. TASKS 63

INPUT chain

FORWARD chain

OUTPUT chain

routing decision

local process

incoming traffic outgoing traffic

Figure 8.3: Chains in iptables

-s source_IP_address (e.g. 192.168.1.2)

-d destination_IP_address

-i input_interface (e.g. eth0)

-o output_interface

-p protocol (e.g. tcp, udp, icmp)

-j action (e.g. ACCEPT, DROP)

Each protocol (e.g. tcp, udp) also have their own set of options: e.g. --sport,
--dport.

There are many other options that you can read from the man pages.
So one way to create the 3rd rule/row in Figure 8.2 is:

$ iptables -A FORWARD -s 128.5.0.0/16 -p tcp --dport 25 -i eth1 -j DROP

The -A option specifies to append the rule to the table. You can also use a -I (insert)
and -D (delete) options in a similar way.

To view all the rules in your table run:

$ iptables -L [CHAIN]

where [CHAIN] is INPUT, OUTPUT, FORWARD—if omitted then all rules are
shown.

To delete (or flush) all rules in your table, run:

$ iptables -F [CHAIN]

8.2 Tasks

In the following tasks you should record your firewall design, as well as tests that show
that the firewall works as intended. You should also use Wireshark to observe what
happens. Each task is independent: after creating firewall rules in the first task, they
should be deleted before attempting the second task.

Task 8.1. Create different firewall rule(s) that will prevent ping from working. Try using
different chains.

Task 8.2. Create firewall rule(s) that will drop TCP packets destined to a specific com-
puter on the Lab network (e.g. your neighbours computer).

64 CHAPTER 8. FIREWALLS

Task 8.3. Create an internet with two subnets: on one subnet is a single PC1; and on
the other subnet is two PCs (PC2 and PC3). PC1 should run both a web server and SSH
server and a netcat server. Create a firewall on the router that allows the following:
Any computer can connect to the web server on PC1; Only PC2 can connect to the SSH
server on PC1; No computers can connect to any other servers (e.g. netcat, FTP, Email)
on PC1.

8.2. TASKS 65

66 CHAPTER 8. FIREWALLS

Chapter 9

Socket Programming

We know that many Internet applications use a client/server model for communication:
a server listens for connections; and a client initiates connections to the server. How are
these client and server programs implemented? In this chapter you will learn the basic
programming constructs, called sockets, to create a client and server program. You can
use these programming constructs to implement your own client/server application. This
chapter explains sockets using the C programming language as an example. Example
C source code is given in Appendix D. Sockets are also used in other programming
languages. Appendix E gives example Python source code. All the source code is available
for download via http://ict.siit.tu.ac.th/~sgordon/netlab/source/.

9.1 Programming with Sockets

Sockets are programming constructs used to communicate between processes. There are
different types of systems that sockets can be used for, the main one of interest to us are
Internet-based sockets (the other commonly used socket is Unix sockets).

Sockets for Internet programming were created in early versions of Unix (written in C
code). Due to the popularity of Unix for network computing at the time, these Unix/C
based sockets become quite common. Now, the same concept has been extended to other
languages and other operating systems. So although we use C code and a Unix-based
system (Ubuntu Linux), the principles can be applied to almost any computer system.

There are two main Internet socket types, corresponding to the two main Internet
transport protocols:

1. Stream sockets use the Transmission Control Protocol (TCP) to communicate.
TCP is stream-oriented, sending a stream of bytes to the receiver. It is also a
reliable transport protocol, which means it guarantees that all data arrives at the
receiver, and arrives in order. TCP starts be setting up a connection (we have seen
the 3-way handshake in other labs), and then sending data between sender and
receiver. TCP is used for most data-oriented applications like web browsing, file
transfer and email.

2. Datagram sockets use the User Datagram Protocol (UDP) to communicate. UDP
is an unreliable protocol. There is no connection setup or retransmissions. The

File: Steve/Courses/2014/s2/its332/sockets.tex, r3521

67

http://ict.siit.tu.ac.th/~sgordon/netlab/source/

68 CHAPTER 9. SOCKET PROGRAMMING

sender simply sends a packet (datagram) to the receiver, and hopes that it arrives.
UDP is used for most real-time oriented applications like voice over IP and video
conversations.

In this lab we are dealing only with Stream (TCP) sockets.
The basic procedure is shown in Figure 9.1. The server must first create a socket,

then associate or bind an IP address and port number to that socket. Then the server
listens for connections.

socket(address_type,socket_type,protocol)
Socket_ID=

Create a socket

bind(Socket_ID,address,address_size)

Bind the socket to an address

Listen for connections

listen(Socket_ID,queued_connections)

Create a socket

Socket_ID=
socket(address_type,socket_type,protocol)

Connect to server

connect(Socket_ID,server_address,
server_address_size)

Accept a new connection from client

New_Socket_ID=
accept(Socket_ID,&client_add,&client_add_size)

Send (write) data to server

write(Socket_ID,data,data_size)

Receive (read) data from client

data_size=
read(New_Socket_ID,buffer,buffer_size)

Send (write) data to client

write(New_Socket_ID,data,data_size)

Receive (read) data from server

data_size=
read(Socket_ID,buffer,buffer_size)

Client Server

Figure 9.1: Socket communications

The client creates a socket and then connects to the server. The connect() system
call from the client triggers a TCP SYN segment from client to server.

The server accepts the connection from the client. The accept() system call is
actually a blocking function—when the program calls accept(), the server does not
return from the function until it receives a TCP SYN segment from a client, and completes
the 3-way handshake.

After the client returns from the connect() system call, and the server returns from
the accept() system call, a connection has been established. Now the two can send data.

Sending and receiving data is performed using the write() and read() functions.
read() is a blocking function—it will only return when the socket receives data. You

9.1. PROGRAMMING WITH SOCKETS 69

(the application programmer) must correctly coordinate reads and writes between the
client and server. If a client calls the read() function, but no data is sent from the
server, then the client will wait forever!

9.1.1 Servers Handling Multiple Connections

It is common for a server to be implemented such that it can handle multiple connections
at a time. The most common way to do this is for a main server process to listen for
connections, and when a connection is established, to create a child process to handle
that connection (while the parent process returns to listening for connections). In our
example, we use the fork() system call.

The fork() system call creates a new process, which is the child process of the current
process. Both the parent and child process execute the next command following the call
to fork(). fork() returns a process ID, which may be:

• Negative, meaning the creation of the child process was unsuccessful

• 0 is returned to the child process

• A positive value is returned to the parent process—this is the process ID of the
child.

Hence we can use the process ID returned from fork() to determine what to do
next—the parent process (pid > 0) will end the current loop and go back to waiting for
connections. The child process (pid = 0) will perform the data exchange with the client.

9.1.2 Further Explanation

You should read the source code for the server.c, and then the source code for client.c.
The comments contain further explanations of how the sockets communication is per-
formed.

The example code for client.c and server.c came from http://www.cs.rpi.edu/

courses/sysprog/sockets/sock.html. You may read through the details on this web
page.

Most of the socket system calls are described in detail in their individual man pages.
You should use the man pages for finding out further details of each function. Note that
you may have to specify the section of man pages to use (which is section 2, the System
Calls section):

$ man -S2 accept

ACCEPT(2) Linux Programmer’s Manual ACCEPT(2)

NAME

accept - accept a connection on a socket

...

Note 3. Unix man pages man pages in Unix are grouped into sections. There may be a
command/file/function in Unix with the same name, but in different sections. Execute
man man to get a list of the sections. For example, accept is a System Call (Section 2)
as well as a System Administration command (Section 8). Executing man accept will

http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html
http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

70 CHAPTER 9. SOCKET PROGRAMMING

give you the manual page for the System Administration command. To see the manual
page for the System Call, you must explicitly specify the section: man -S2 accept. If
you don’t know the section you ar elooking for, use the -k option to search, for example
man -k accept.

9.2 Tasks

For the following tasks you should capture the tests using Wireshark to understand
the relationship between the applications and the network communications. For new
programs you create, you must demonstate the program and source code to the instructor.

Task 9.1. Download, compile and test the provided client/server sockets programs.

Task 9.2. Modify the client/server programs to allow exchange of multiple messages. To
do so, create a “fake” login mechanism. The server should ask the client for a username
by sending a username message, and then the client will send the username to the server.
Then the server will prompt for a password by sending the password message, and then the
client will send the password to the server. Finally, the server will check if the username
and password match an already known username/password pair, and send a response back
to the client. Then both the client and server can finish (of course the server should still
handle more connections). The output of the interaction should look as below:

Client Server

1. Username:

2. <user types in username, eg. "X">

3. Client login with username "X"

4. Password:

5. <user types in password, eg. "Y">

6. Client entered password "Y"

7. Username and password are correct.

8. You are now logged in.

Task 9.3. Using the supplied client/server sockets programs, implement a third proxy
server.

9.2. TASKS 71

72 CHAPTER 9. SOCKET PROGRAMMING

Appendix A

Acronyms and Units

A.1 Acronyms

ARP Address Resolution Protocol. Given an IP address, determines the corresponding
MAC address. ARP at Network Sorcery: http://www.networksorcery.com/enp/
protocol/arp.htm. IETF RFC 826: http://www.ietf.org/rfc/rfc826.txt

CSS Cascading Style Sheets.

DHCP Dynamic Host Configuration Protocol. Allows IP addresses (and other infor-
mation like DNS servers and netmasks) to be automatically assigned to computers
in a network (rather than the user/administrator assigning the IP address manu-
ally). Requires the computer to be configured to use DHCP, and a DHCP server to
be running on the local network. IETF RFC 2131: http://www.ietf.org/rfc/

rfc2131.txt

DNS Domain Name System. Used to find the IP address that corresponds to the com-
puter with a given domain name. Perform DNS queries at http://www.dnsstuff.
com/.

HTML HyperText Markup Language. Language commonly used for creating web pages.
W3C HTML Specification: http://www.w3.org/MarkUp/

HTTP HyperText Transfer Protocol. Transfer web content, often HTML but now many
other formats, between a client and server. W3C HTTP Specifiaction: http:

//www.w3.org/Protocols/

ICMP Internet Control Message Protocol. Testing and diagnosing problems in the
Internet. Applications such as ping and traceroute often use ICMP. ICMP at
Network Sorcery: http://www.networksorcery.com/enp/protocol/icmp.htm

IEEE Institute of Electrical and Electronic Engineers. Professional society, which in-
cludes a standards organisation that has produced many LAN standards, as well
as electrical/electronic interface standards. http://www.ieee.org/

File: Steve/Courses/2014/s2/its332/def.tex, r3455

73

http://www.networksorcery.com/
http://www.networksorcery.com/enp/protocol/arp.htm
http://www.networksorcery.com/enp/protocol/arp.htm
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.dnsstuff.com/
http://www.dnsstuff.com/
http://www.w3.org/MarkUp/
http://www.w3.org/Protocols/
http://www.w3.org/Protocols/
http://www.networksorcery.com/
http://www.networksorcery.com/enp/protocol/icmp.htm
http://www.ieee.org/

74 APPENDIX A. ACRONYMS AND UNITS

IETF Internet Engineering Task Force. Technical organisation that produces standards
(and other documents), known as RFCs, for many Internet technologies. Examples:
IP, TCP and .

IP Internet Protocol.

LAN Local Area Network. Examples: IEEE 802.3 Ethernet, IEEE 802.11 Wireless
LAN, Token Ring.

RFC Request For Comment. A type of document published by IETF. It may be an
official standard, advice, experimental protocol or informal discussion document.

RTT Round Trip Time. The propagation time from a source to destination and back
to source.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

W3C World Wide Web Consortium. Standards organisation that produces standards
for the web, such as HTML, XML and CSS.

WAN Wide Area Network. Examples: PDH, SDH, ATM, Frame Relay.

XML eXtensible Markup Language.

A.2 Units

The following may differ from standard practice. That is, the defintions may not always
be true under all conditions—they are chosen manily for the simplicity of the classes.

A Byte, normally abbreviated with an uppercase B, contains 8 bits, where a bit is
normally abbreviated with a lowercase b.

The following unit prefixes are commonly used:

T tera, 1012

G giga, 109

M mega, 106

k kilo, 103

m milli, 10−3

µ micro, 10−6

n nano, 10−9

Appendix B

Lab Facilities

B.1 Work Stations

The Network Lab consist of 36 work stations (4 groups of 9), comprising an Intel-based
computer and LCD monitor. Each computer has two operating systems installed: Mi-
crosoft Windows 7 and Ubuntu Linux. As well as all the standard devices of recent PCs,
each computer has three 100Mb/s Fast Ethernet network interface cards.

B.2 Network Infrastructure

The lab computers are connected via a 100Mb/s Fast Ethernet LAN. The default con-
figuration of the network has a single interface on each of the group of 9 computers
connected to a Cisco switch in one of the four rack cabinets (that is 9 Ethernet cables
into the switch). The other two interfaces on each component have “extension” cables
so that the computers can be connected directly to each other in the lab. Each cabinet
contains one switch and two Cisco routers. In the default configuration the routers are
not used, but will be use for special confiruations during the lab class. The connections
for a single computer are illustrated in Figure B.1. Note that each of the Ethernet cables
go into a socket in the floor, and then to the switch. The group connections are shown
in Figures B.2 and B.3.

The switch for each group is then connected to a switch in the IT Centre on the 3rd
floor (and subsequently to the rest of the SIIT network, and Internet). This connects
puts all computers in the lab in the same IP network. They are also connected to other
computers on the SIIT Bangkadi network, and subsequently to Rangsit and the Internet.

File: Steve/Courses/2014/s2/its332/facilities.tex, r3455

75

76 APPENDIX B. LAB FACILITIES

29 U

2 U

2 U

1 U

Category 5
Ethernet Cable

Switch

Router 1

Router 2

To 3rd floor
Network centre

Figure B.1: Network Lab: Connections for each computer

B.2. NETWORK INFRASTRUCTURE 77

Switch

Router 1

Router 2

Switch in SIIT
Network Centre

Figure B.2: Network Lab: Connections for each group of 9 computers

78 APPENDIX B. LAB FACILITIES

... ...

... ...

SIIT Bangkadi Internet

Networking Lab

Figure B.3: Network Lab: Connections for entire lab

Appendix C

Ubuntu Reference Material

C.1 Commands

Table C.1 lists some of the general Ubuntu commands. Table C.2 lists some of the
important networking commands, as well as their verison on Windows. Use man to see a
detailed description of commands on Ubuntu.

Description Ubuntu

List files in directory ls

Change directory cd

Copy a file cp

Rename/move a file mv

Delete/remove a file rm

Create/make a directory mkdir

Delete/remove a directory rmdir

Display a file less or cat
Display current working directory pwd

Table C.1: General Ubuntu commands

C.2 Files and Directories

Table C.2 lists commonly accessed files and directories for the course. For some of these
files, you can view a detailed description and format specification via the man pages, e.g.
man hosts, man interfaces.

File: Steve/Courses/2014/s2/its332/ubunturef.tex, r3455

79

80 APPENDIX C. UBUNTU REFERENCE MATERIAL

Description Ubuntu Windows

Network interface configuration ifconfig ipconfig

Test network connectivity ping ping

Test network route tracepath tracert

Routing table configuration route route

Network statistics netstat netstat

ARP tables arp arp

DNS (simple) host nslookup

DNS (medium) nslookup nslookup

DNS (detailed) dig nslookup

Capture and view traffic wireshark Wireshark
Enable network interface ifup -
Disable network interface ifdown -

Table C.2: Important Ubuntu networking commands

File Description

/etc/hosts Local domain names
/etc/resolv.conf Local DNS server
/etc/network/interfaces Network interface information
/proc/sys/net/ipv4/ip forward IP forwarding is on (1) or not (0)
/etc/apache2/sites-available/default Configuration for Apache web server
/var/lib/dhcp3/dhclient.X.leases DHCP IP address leases
/etc/dhcp3/dhclient.conf DHCP configuration

Table C.3: Important Ubuntu files and directories

Appendix D

C Sockets Examples

This appendix includes example implementation of clients and servers that can exchange
data across the Internet. They are implemented in C. There is a TCP version and a
UDP version. The source code is quite old (there are newer, better constructs available),
and may produce warnings when compiled, however it still executes as intended. The
purpose of this code is to show a simple example of using sockets in C to create an Internet
client/server application. If you want to create your own application, it is recommended
you look for other (better) ways to implement in C.

The source code can be downloaded via http://ict.siit.tu.ac.th/~sgordon/

netlab/source/.

D.1 TCP Sockets in C

D.1.1 Example Usage

On one computer compile the server and then start it. The server takes a port number
as a command line argument:

$ gcc -o tcpserver socket_tcp_server.c

$./tcpserver 5001

On another computer compile the client and then start it. The client takes the IP
address of the server and the port number it uses as command line arguments:

$ gcc -o tcpclient socket_tcp_client.c

$./tcpclient 10.10.6.210 5001

The client prompts for a message. Type in a message and press Enter. The result
should be the message being displayed at the server and then the client printing “I got
your message”. The client exits, but the server keeps running (other clients can connect).

An example on the client:

$./tcpclient 10.10.6.210 5001

Please enter the message: Hello from Steve

I got your message

$

And on the server:

File: Steve/Courses/2014/s2/its332/source.tex, r3463

81

http://ict.siit.tu.ac.th/~sgordon/netlab/source/
http://ict.siit.tu.ac.th/~sgordon/netlab/source/

82 APPENDIX D. C SOCKETS EXAMPLES

$./tcpserver 5001

Here is the message: Hello from Steve

D.1.2 TCP Client

1 /* ***

2 * ITS 332 Information Technology II (Networking) Lab

3 * Semester 2, 2010

4 * SIIT

5 *

6 * Client/Server Programming Lab

7 * File: client.c

8 * Date: 24 Jan 2007

9 * Version: 1.0

10 *

11 * Description:

12 * Client to demonstrate TCP sockets programming. You should read the

13 * server.c code as well.

14 *

15 * Usage:

16 * client server_ip_address server_port_number

17 *

18 * Acknowledgement:

19 * This code is based on the examples and descriptions from the

20 * Computer Science Department, Rensselaer Polytechnic Institute at:

21 * http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

22 *

23 * *** */

24
25 #include <stdio.h>

26 #include <string.h>

27 #include <stdlib.h>

28 #include <sys/types.h>

29 #include <sys/socket.h>

30 #include <netinet/in.h>

31 #include <netdb.h>

32
33 /* === */

34 /* error: display an error message and exit */

35 /* === */

36 void error(char *msg)

37 {

38 perror(msg);

39 exit(0);

40 }

41
42 /* === */

43 /* main: connect to server, prompt for a message, send the message, */

44 /* receive the ack from server and then exit */

45 /* === */

46 int main(int argc, char *argv[])

47 {

48 /* socket file descriptor, port number of server, and number of bytes */

49 int sockfd, portno, n;

D.1. TCP SOCKETS IN C 83

50 struct sockaddr_in serv_addr; /* server address */

51 /* The hostent structure defines a host computer on the Internet. It

52 contains field which describe the host name, aliases for the name,

53 address type and actual address (e.g. IP address) */

54 struct hostent *server;

55 char buffer[256];

56
57 /* The user must enter two parameters on the command line:

58 - server host name or IP address

59 - port number used by server */

60 if (argc < 3) {

61 fprintf(stderr,"usage %s hostname port\n", argv[0]);

62 exit(0);

63 }

64 /* Get the port number for server entered by user */

65 portno = atoi(argv[2]);

66
67 /* Create an Internet stream (TCP) socket */

68 sockfd = socket(AF_INET, SOCK_STREAM, 0);

69 if (sockfd < 0)

70 error("ERROR opening socket");

71
72 /* The gethostbyname() system call uses DNS to determine the IP

73 address of the host */

74 server = gethostbyname(argv[1]);

75 if (server == NULL) {

76 fprintf(stderr,"ERROR, no such host\n");

77 exit(0);

78 }

79
80 /* Set the server address to all zeros */

81 bzero((char *) &serv_addr, sizeof(serv_addr));

82 serv_addr.sin_family = AF_INET; /* Internet family of protocols */

83
84 /* Copy server address obtained from gethostbyname to our

85 serv_addr structure */

86 bcopy((char *)server->h_addr,

87 (char *)&serv_addr.sin_addr.s_addr,

88 server->h_length);

89
90 /* Convert port number to network byte order */

91 serv_addr.sin_port = htons(portno);

92
93 /* The connect() system call establishes a connection to the server. The

94 three parameters are:

95 - socket file descriptor

96 - address of server

97 - size of the server’s address */

98 if (connect(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0)

99 error("ERROR connecting");

100
101 /* Once connected, the client prompts for a message, and the users

102 input message is obtained with fgets() and written to the socket

103 using write(). */

104 printf("Please enter the message: ");

105 bzero(buffer,256);

106 fgets(buffer,255,stdin);

84 APPENDIX D. C SOCKETS EXAMPLES

107 n = write(sockfd,buffer,strlen(buffer));

108 if (n < 0)

109 error("ERROR writing to socket");

110
111 /* Zero a buffer and then read from the socket */

112 bzero(buffer,256);

113 n = read(sockfd,buffer,255);

114 if (n < 0)

115 error("ERROR reading from socket");

116
117 /* Display the received message and then quit the program */

118 printf("%s\n",buffer);

119 return 0;

120 }

D.1.3 TCP Server

1 /* ***

2 * ITS 332 Information Technology II (Networking) Lab

3 * Semester 2, 2010

4 * SIIT

5 *

6 * Client/Server Programming Lab

7 * File: server.c

8 * Date: 24 Jan 2007

9 * Version: 1.0

10 *

11 * Description:

12 * Server to demonstrate TCP sockets programming

13 *

14 * Usage:

15 * server server_port_number

16 *

17 * Acknowledgement:

18 * This code is based on the examples and descriptions from the

19 * Computer Science Department, Rensselaer Polytechnic Institute at:

20 * http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

21 *

22 * *** */

23
24 #include <stdio.h>

25 #include <string.h>

26 #include <stdlib.h>

27 #include <sys/types.h>

28 #include <sys/socket.h>

29 #include <netinet/in.h>

30
31 /* === */

32 /* Function Prototypes */

33 /* === */

34 void dostuff(int);

35
36 /* === */

37 /* error: display an error message and exit */

38 /* === */

39 void error(char *msg)

40 {

D.1. TCP SOCKETS IN C 85

41 perror(msg);

42 exit(1);

43 }

44
45 /* === */

46 /* main: listen for connections, and create new process for each */

47 /* connection. Receive the message from client and acknowledge. */

48 /* === */

49 int main(int argc, char *argv[])

50 {

51 /* file descriptors that contain values return from socket and

52 and accept system calls */

53 int sockfd, newsockfd;

54 int portno; /* port number on which server accepts connections */

55 int pid; /* process ID for newly created child process */

56 /* sockaddr_in is a structure containing an IP address - it is

57 defined in netinet/in.h */

58 struct sockaddr_in serv_addr, cli_addr;

59 size_t clilen; /* size of the address of the client */

60
61 /* The user must pass the port number that the server listens on

62 as a command line parameter (otherwise error) */

63 if (argc < 2) {

64 fprintf(stderr,"ERROR, no port provided\n");

65 exit(1);

66 }

67
68 /* First we must create a socket using the socket() system call.

69 The three parameters are:

70 - address domain of the socket. It may be an Unix socket, an

71 Internet socket or others. We use the Internet socket which

72 is defined by the constant AF_INET

73 - socket type. Stream (TCP), or Datagram (UDP, SOCK_DGRAM) or

74 a raw socket (for accessing IP directly).

75 - the protocol. 0 means the operating system will choose the

76 most appropriate protocol: TCP for stream and UDP for

77 datagram.

78 The call to socket returns a file descriptor (or -1 if it fails) */

79 sockfd = socket(AF_INET, SOCK_STREAM, 0);

80 if (sockfd < 0)

81 error("ERROR opening socket");

82
83 /* bzero sets all values in a buffer to 0. Here we set the server

84 address to 0 */

85 bzero((char *) &serv_addr, sizeof(serv_addr));

86
87 /* Get the port number that the user entered via command line */

88 portno = atoi(argv[1]);

89
90 /* Now we set the server address in the structure serv_addr */

91 /* Note that INADDR_ANY is a constant that refers to the IP

92 address of the machine the server is running on. */

93 /* Note that the port number must be specified in network byte order.

94 Different computer systems represents bytes in different order:

95 big endian - most significant bit of byte is first

96 little endian - least significant bit of byte is first

97 For this reason, everything must be converted to network byte

86 APPENDIX D. C SOCKETS EXAMPLES

98 order (which is big endian). htons does this conversion. */

99 serv_addr.sin_family = AF_INET; /* Protocol family: Internet */

100 serv_addr.sin_addr.s_addr = INADDR_ANY; /* Server address */

101 serv_addr.sin_port = htons(portno); /* Port number */

102
103 /* The bind() system call binds a socket to an address. This

104 may fail if for example the port number is already being

105 used on this machine. */

106 if (bind(sockfd, (struct sockaddr *) &serv_addr,

107 sizeof(serv_addr)) < 0)

108 error("ERROR on binding");

109
110 /* The listen() system call tells the process to listen on the

111 socket for connections. The first parameter is a file descriptor

112 for the socket and the second parameter is the number of

113 connections that can be queued while the process is handling this

114 connection. 5 is a reasonable value for most systems */

115 listen(sockfd,5);

116 clilen = sizeof(cli_addr);

117
118 /* Now we enter an infinite loop, waiting for connections from clients.

119 When a connection is established, we will create a new child process

120 using fork(). The child process will handle the data transfer with

121 the client. The parent process will wait for another connection. */

122 while (1) {

123 /* The accept() system call causes the process to block until a

124 client connects with the server. The process will wake up once

125 the connection has been established (e.g. TCP handshake).

126 The parameters to accept are:

127 - the file descriptor of the socket we are waiting on

128 - a structure to store the address of the client that connects

129 - a variable to store the length of the client address

130 It returns a new file descriptor for the socket, and all

131 communication is now done with this new descriptor. */

132 newsockfd = accept(sockfd,

133 (struct sockaddr *) &cli_addr, &clilen);

134 if (newsockfd < 0)

135 error("ERROR on accept");

136
137 /* Create child process to handle the data transfer */

138 pid = fork();

139 if (pid < 0)

140 error("ERROR on fork");

141 /* The process ID in the child process will be 0. Hence the child

142 process will close the old socket file descriptor and then call

143 dostuff() to perform the interactions with the client. When

144 complete, the child process will exit. */

145 if (pid == 0) {

146 close(sockfd);

147 dostuff(newsockfd);

148 exit(0);

149 }

150 /* This is called by the parent process only. It closes the

151 new socket file descriptor, which is not needed by the parent */

152 else close(newsockfd);

153 } /* end of while */

154 return 0; /* we never get here because we are in infinite loop */

D.2. UDP SOCKETS IN C 87

155 }

156
157 /* === */

158 /* dostuff: exchange some messages between client and server. There */

159 /* is a separate instance of this function for each connection. */

160 /* === */

161 void dostuff (int sock)

162 {

163 int n;

164 char buffer[256];

165
166 /* Set a 256 byte buffer to all zeros */

167 bzero(buffer,256);

168
169 /* Read from the socket. This will block until there is something for

170 it to read in the socket (i.e. after the client has executed a

171 write()). It will read either the total number of characters in the

172 socket or 255, whichever is less, and return the number of characters

173 read. */

174 n = read(sock,buffer,255);

175 if (n < 0) error("ERROR reading from socket");

176
177 /* Display the message that was received */

178 printf("Here is the message: %s\n",buffer);

179
180 /* Write a message to the socket. The third parameter is the size of

181 the message */

182 n = write(sock,"I got your message",18);

183 if (n < 0) error("ERROR writing to socket");

184 }

D.2 UDP Sockets in C

D.2.1 Example Usage

On one computer compile the server and then start it. The server takes a port number
as a command line argument:

$ gcc -o udpserver socket_udp_server.c

$./udpserver 5001

On another computer compile the client and then start it. The client takes the IP
address of the server and the port number it uses as command line arguments:

$ gcc -o udpclient socket_udp_client.c

$./udpclient 10.10.6.210 5001

The client prompts for a message. Type in a message and press Enter. The result
should be the message being displayed at the server and then the client printing “Got
your message”. The client exits, but the server keeps running (other clients can connect).

An example on the client:

$./udpclient 10.10.6.210 5002

Please enter the message: a udp test

Got an ack: Got your message

$

88 APPENDIX D. C SOCKETS EXAMPLES

And on the server:

$./udpserver 5002

Received a datagram: a udp test

D.2.2 UDP Client

1 /* ***

2 * ITS 332 Information Technology II (Networking) Lab

3 * Semester 2, 2006

4 * SIIT

5 *

6 * Client/Server Programming Lab

7 * File: client_idp.c

8 * Date: 29 Jan 2007

9 * Version: 1.0

10 *

11 * Description:

12 * Client to demonstrate UDP sockets programming. You should read the

13 * server_udp.c code as well.

14 *

15 * Usage:

16 * client server_ip_address server_port_number

17 *

18 * Acknowledgement:

19 * This code is based on the examples and descriptions from the

20 * Computer Science Department, Rensselaer Polytechnic Institute at:

21 * http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

22 *

23 * *** */

24
25 #include <stdio.h>

26 #include <string.h>

27 #include <stdlib.h>

28 #include <sys/types.h>

29 #include <sys/socket.h>

30 #include <netinet/in.h>

31 #include <arpa/inet.h>

32 #include <netdb.h>

33
34 /* === */

35 /* error: display an error message and exit */

36 /* === */

37 void error(char *msg)

38 {

39 perror(msg);

40 exit(0);

41 }

42
43 /* === */

44 /* main: create socket and send message to server */

45 /* === */

46 int main(int argc, char *argv[])

47 {

48 int sock, n;

49 struct sockaddr_in server, from;

D.2. UDP SOCKETS IN C 89

50 struct hostent *hp;

51 char buffer[256];

52 size_t length;

53
54 /* User must input server and port number */

55 if (argc != 3) { printf("Usage: server port\n");

56 exit(1);

57 }

58
59 /* Create a Datagram (UDP) socket */

60 sock= socket(AF_INET, SOCK_DGRAM, 0);

61 if (sock < 0) error("socket");

62
63 server.sin_family = AF_INET;

64
65 /* Get the IP address for destination server */

66 hp = gethostbyname(argv[1]);

67 if (hp==0) error("Unknown host");

68
69 /* Set the server address and port */

70 bcopy((char *)hp->h_addr,

71 (char *)&server.sin_addr,

72 hp->h_length);

73 server.sin_port = htons(atoi(argv[2]));

74
75 length=sizeof(struct sockaddr_in);

76
77 /* Prompt for message from user */

78 printf("Please enter the message: ");

79 bzero(buffer,256);

80 fgets(buffer,255,stdin);

81
82 /* Send message to socket (server) */

83 n=sendto(sock,buffer,

84 strlen(buffer),0,(struct sockaddr *) &server,length);

85 if (n < 0) error("Sendto");

86
87 /* Receive response from server */

88 n = recvfrom(sock,buffer,256,0,(struct sockaddr *) &from, &length);

89 if (n < 0) error("recvfrom");

90
91 /* Display response to user */

92 write(1,"Got an ack: ",12);

93 write(1,buffer,n);

94 }

D.2.3 UDP Server

1 /* ***

2 * ITS 332 Information Technology II (Networking) Lab

3 * Semester 2, 2006

4 * SIIT

5 *

6 * Client/Server Programming Lab

7 * File: server_udp.c

8 * Date: 29 Jan 2007

9 * Version: 1.0

90 APPENDIX D. C SOCKETS EXAMPLES

10 *

11 * Description:

12 * Server to demonstrate UDP sockets programming

13 *

14 * Usage:

15 * server server_port_number

16 *

17 * Acknowledgement:

18 * This code is based on the examples and descriptions from the

19 * Computer Science Department, Rensselaer Polytechnic Institute at:

20 * http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

21 *

22 * *** */

23
24 #include <stdio.h>

25 #include <string.h>

26 #include <stdlib.h>

27 #include <sys/types.h>

28 #include <sys/socket.h>

29 #include <netinet/in.h>

30 #include <netdb.h>

31
32 /* === */

33 /* error: display an error message and exit */

34 /* === */

35 void error(char *msg)

36 {

37 perror(msg);

38 exit(0);

39 }

40
41 /* === */

42 /* main: create socket and receive/send to socket */

43 /* === */

44 int main(int argc, char *argv[])

45 {

46 int sock, length, n;

47 struct sockaddr_in server; /* server address structure */

48 struct sockaddr_in from; /* source address structure */

49 char buf[1024];

50 size_t fromlen;

51
52 /* Port number must be passed as parameter */

53 if (argc < 2) {

54 fprintf(stderr, "ERROR, no port provided\n");

55 exit(0);

56 }

57
58 /* Create a Datagram (UDP) socket */

59 sock=socket(AF_INET, SOCK_DGRAM, 0);

60 if (sock < 0) error("Opening socket");

61
62 length = sizeof(server);

63 bzero(&server,length);

64
65 /* Set the server address */

66 server.sin_family=AF_INET;

D.2. UDP SOCKETS IN C 91

67 server.sin_addr.s_addr=INADDR_ANY;

68 server.sin_port=htons(atoi(argv[1]));

69
70 /* Bind the socket to the address */

71 if (bind(sock,(struct sockaddr *)&server,length)<0)

72 error("binding");

73
74 fromlen = sizeof(struct sockaddr_in);

75 /* Infinite loop, receiving data and sending response */

76 while (1) {

77 /* Receive data from socket. Parameters are:

78 - server socket

79 - buffer to read data into

80 - maximum buffer size

81 - flags to control the receive operation

82 - structure to store source address

83 - source address length

84 */

85 n = recvfrom(sock,buf,1024,0,(struct sockaddr *)&from,&fromlen);

86 if (n < 0) error("recvfrom");

87 write(1,"Received a datagram: ",21);

88 write(1,buf,n);

89 /* Write data to socket. Parameters are:

90 - server socket

91 - data to write

92 - length of data

93 - flags to control send operation

94 - destination address

95 - length of destination address

96 */

97 n = sendto(sock,"Got your message\n",17,

98 0,(struct sockaddr *)&from,fromlen);

99 if (n < 0) error("sendto");

100 }

101 }

92 APPENDIX D. C SOCKETS EXAMPLES

Appendix E

Python Sockets Examples

This appendix includes example implementation of clients and servers that can exchange
data across the Internet. They are implemented in Python. There is a TCP version and
a UDP version of the client/server application. In addition there is an application that
uses raw sockets to generate and send packets of any type.

The source code can be downloaded via http://ict.siit.tu.ac.th/~sgordon/

netlab/source/.

E.1 TCP Sockets in Python

E.1.1 Example Usage

The example application contains the server IP address (127.0.0.1), port (5005) and
message (Hello World!) hardcoded into the Python source. The address used means
the client and server run on the same computer (easy for testing, but not very useful).
You should change them to the values appropriate for your setup.

Start the server in one terminal, and then start the client in another terminal. The
client exchanges data with the server and then exits. The server remains running. The
output on the server is:

$ python socket_tcp_server.py

Hello, World! from 127.0.0.1:56279

The output on the client is:

$ python socket_tcp_client.py

Connected to 127.0.0.1:5005

Thank you.

$

E.1.2 TCP Client

1 """

2 Demonstration of TCP client. See also socket_tcp_server.py.

3 """

4

File: Steve/Courses/2014/s2/its332/python.tex, r3463

93

http://ict.siit.tu.ac.th/~sgordon/netlab/source/
http://ict.siit.tu.ac.th/~sgordon/netlab/source/

94 APPENDIX E. PYTHON SOCKETS EXAMPLES

5 import socket

6
7 # Addresses and data

8 serverip = "127.0.0.1"

9 serverport = 5005

10 message = "Hello, World!"

11
12 # Create a TCP stream socket with address family of IPv4 (INET)

13 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

14
15 # Connect to the server at given IP and port

16 s.connect((serverip, serverport))

17 print "Connected to " + serverip + ":" + str(serverport)

18
19 # Send the entire message

20 s.sendall(message)

21
22 # Wait for a response (max of 1024 bytes)

23 response = s.recv(1024)

24 print response

E.1.3 TCP Server

1 """

2 Demonstration of TCP server. See also socket_tcp_client.py.

3 """

4
5 import socket

6
7 # Addresses and data

8 serverport = 5005

9 message = "Thank you."

10
11 # Create a TCP stream socket with address family of IPv4 (INET)

12 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

13
14 # Bind the socket to any IP address and the designated port

15 s.bind((’’, serverport))

16
17 # Listen for connect requests (up to 5 at a time)

18 s.listen(5)

19
20 # Server continues forever accept client connections

21 while 1:

22
23 # Wait to accept a connection from a client

24 # This creates a new socket

25 clientsocket, clientaddress = s.accept()

26
27 # Wait for a request from the connected client (max of 1024 bytes)

28 request = clientsocket.recv(1024)

29 print request + " from " + clientaddress[0] + ’:’ + str(clientaddress[1])

30
31 # Send the entire message

32 clientsocket.sendall(message)

33
34 # Close the connection to client

E.2. UDP SOCKETS IN PYTHON 95

35 clientsocket.close()

E.2 UDP Sockets in Python

E.2.1 Example Usage

Similar to the TCP Python example, the addresses and messages are hardcoded in the
source for the UDP example. You should change them to values appropriate for your
setup.

Start the server in one terminal, and then start the client in another terminal. The
client sends a message to the server and the server returns an acknowledgement. The
client waits for 0.5 seconds and then repeats. To exit the client/server press Ctrl-C.

The output on the server is:

$ python socket_udp_server.py

received message: Hello, World!

received message: Hello, World!

received message: Hello, World!

received message: Hello, World!

received message: Hello, World!

received message: Hello, World!

received message: Hello, World!

The output on the client is:

$ python socket_udp_client.py

UDP target IP: 127.0.0.1

UDP target port: 5006

message: Hello, World!

received message: Ack

received message: Ack

received message: Ack

received message: Ack

received message: Ack

received message: Ack

received message: Ack

^C

E.2.2 UDP Client

1 """

2 Demonstration of UDP client. See also socket_udp_server.py.

3 """

4
5 import socket

6 import time

7
8 # Addresses and data

9 serverip = "127.0.0.1"

10 serverport = 5006

11 message = "Hello, World!"

12
13 print "UDP target IP:", serverip

14 print "UDP target port:", serverport

96 APPENDIX E. PYTHON SOCKETS EXAMPLES

15 print "message:", message

16
17 # Create a UDP datagram socket with address family of IPv4 (INET)

18 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

19
20 # Send data forever (or until Ctrl-C)

21 while True:

22
23 # Send message to server

24 sock.sendto(message, (serverip, serverport))

25
26 # Wait for reply from server (max 1024 bytes)

27 data, addr = sock.recvfrom(1024)

28 print "received message:", data

29
30 # Wait for some time before sending the message again

31 time.sleep(0.5)

E.2.3 UDP Server

1 """

2 Demonstration of UDP server. See also socket_udp_client.py.

3 """

4
5 import socket

6
7 # Addresses and data

8 serverport = 5006

9 message = "Ack"

10
11 # Create a UDP datagram socket with address family of IPv4 (INET)

12 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

13
14 # Bind the socket to any IP address and the designated port

15 sock.bind((’’, serverport))

16
17 # Receive data forever (or until Ctrl-C)

18 while True:

19
20 # Wait for message from client (max 1024 bytes)

21 data, clientaddr = sock.recvfrom(1024)

22 print "received message:", data

23
24 # Send message to client

25 sock.sendto(message, clientaddr)

E.3 Raw Sockets in Python

TCP and UDP sockets provide an interface for an application to send/receive data using
the respective transport protocol. In turn, both TCP and UDP use IP, which creates an
IP datagram and sends it via the NIC. Raw sockets provide an interface for an application
to create any type of packet and send via a chosen network interface. It provides the
application direct access to send a data link layer packet (e.g. Ethernet frame), rather
than having to go via TCP/IP.

Most applications don’t need raw sockets, as TCP or UDP sockets provide a much

E.3. RAW SOCKETS IN PYTHON 97

simpler interface for the service required by the application. However there are special
cases when raw sockets may be used. For example, you can create packets of any format
to send via a network interface for testing purposes (testing the network, testing the
security of a system). Also you can capture packets of any type using raw sockets (e.g.
implement your own “tcpdump”).

The following code provides an example of using raw sockets to create two types of
packets:

1. An Ethernet frame carrying the data Hello. The frame is sent to another computer
on the LAN (hardcoded to be 192.168.1.1). Although the frame is sent, the
receiving computer will most likely not do anything with the frame as there is no
network layer protocol to pass the received data to.

2. An Ethernet frame carrying an IP datagram. Inside the IP datagram is an ICMP
packet, in particular an ICMP Echo Request used by ping. Again this is sent to a
hardcoded destination address, with the intention that when this computer receives
the Ethernet frame it will respond with an ICMP Echo Reply.

The example Python application demonstrates how to create the two frames to be
sent. The code creates the frames in their raw binary format (although using hex-
adecimal values instead of binary). The frames, including source/destination MAC ad-
dresses, source/destination IP addresses, packet sizes, and checksums, are hardcoded in
the Python source. This wil not run on your computer: you will at least need to change
the addresses and checksums. Read the source code to see suggestions on how to do this.

The application sends the two frames and then exits. To test whether it worked
you should capture using tcpdump on both the sending computer and the destination
computer.

1 """

2 Demonstration of a raw socket to send arbitrary Ethernet packets

3 Includes two packet examples: Ethernet frame, ICMP ping request

4 Based on: https://gist.github.com/cslarsen/11339448

5 """

6
7 import socket

8
9 # Addresses and data

10 interface = "eth0" # Set this to your Ethernet interface (e.g. eth0, eth1, ...)

11 protocol = 0 # 0 = ICMP, 6 = TCP, 17 = UDP, ...

12
13 # Create a raw socket with address family PACKET

14 s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW)

15
16 # Bind the socket to an interface using the specific protocol

17 s.bind((interface,protocol))

18
19 # Create an Ethernet frame header

20 # - Destination MAC: 6 Bytes

21 # - Source MAC: 6 Bytes

22 # - Type: 2 Bytes (IP = 0x0800)

23 # Change the MAC addresses to match the your computer and the destination

24 ethernet_hdr = [0x00, 0x23, 0x69, 0x3a, 0xf4, 0x7d, # 00:23:69:3A:F4:7D

25 0x90, 0x2b, 0x34, 0x60, 0xdc, 0x2f, # 90:2b:34:60:dc:2f

98 APPENDIX E. PYTHON SOCKETS EXAMPLES

26 0x08, 0x00]

27
28 # ------------

29 # First packet

30 # Lets create an Ethernet frame where the data is "Hello". The ethernet header

31 # is already created above, now we just need the data. Note that if you capture

32 # this frame in Wireshark it may report "Malformed packet" which means Wireshark

33 # does not understand the protocol used. Thats ok, the packet was still sent.

34
35 # Frame structure:

36 # etherent_hdr | ethernet_data

37 # 14 B | 5 B

38
39 ethernet_data_str = "Hello"

40
41 # Convert byte sequences to strings for sending

42 ethernet_hdr_str = "".join(map(chr, ethernet_hdr))

43
44 # Send the frame

45 s.send(ethernet_hdr_str + ethernet_data_str)

46
47
48 # -------------

49 # Second packet

50 # Now lets create a more complex/realistic packet. This time a ping echo request

51 # with the intention of receiving a ping echo reply. This requires us to create

52 # the IP header, ICMP header and ICMP data with exact values of each field given

53 # as bytes. The easiest way to know what bytes is to capture a normal packet in

54 # Wireshark and then view the bytes. In particular look at the IP ahd ICMP

55 # checksums - they need to be correct for the receiver to reply to a ping Echo

56 # request. The following example worked on my computer, but will probably not

57 # work on your computer without modification. Especially modify the addresses

58 # and checksums.

59
60 # Frame structure:

61 # etherent_hdr | ip_hdr | icmp_hdr | icmp_data

62 # 14 B | 20 B | 16 B | 48 B

63
64 # Create IP datagram header

65 # - Version, header length: 1 Byte (0x45 for normal 20 Byte header)

66 # - DiffServ: 1 Byte (0x00)

67 # - Total length: 2 Bytes

68 # - Identificaiton: 2 Bytes (0x0000)

69 # - Flags, Fragment Offset: 2 Bytes (0x4000 = Don’t Fragment)

70 # - Time to Line: 1 Byte (0x40 = 64 hops)

71 # - Protocol: 1 Byte (0x01 = ICMP, 0x06 = TCP, 0x11 = UDP, ...)

72 # - Header checksum: 2 Bytes

73 # - Source IP: 4 Bytes

74 # - Destination IP: 4 Bytes

75 ip_hdr = [0x45,

76 0x00,

77 0x00, 0x54,

78 0x80, 0xc6,

79 0x40, 0x00,

80 0x40,

81 0x01,

82 0x36, 0x8a, # checksum - change this!

E.3. RAW SOCKETS IN PYTHON 99

83 0xc0, 0xa8, 0x01, 0x07, # 192.168.1.7

84 0xc0, 0xa8, 0x01, 0x01] # 192.168.1.1

85
86 # ICMP Ping header

87 # - Type: 1 Byte (0x08 = Echo request, 0x00 = Echo reply)

88 # - Code: 1 Byte (0x00)

89 # - Checksum: 2 Bytes (try 0x0000, then in Wireshark look at correct value)

90 # - Identifier: 2 Bytes

91 # - Sequence number: 2 Bytes

92 # - Timestamp: 8 Bytes

93 icmp_hdr = [0x08,

94 0x00,

95 0xc2, 0x4d, # checksum - change this!

96 0x00, 0x00,

97 0x00, 0x01,

98 0xab, 0x5c, 0x8a, 0x54, 0x00, 0x00, 0x00, 0x00]

99
100 # ICMP Ping data

101 # - Data: 48 Bytes

102 icmp_data = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

103 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

104 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

105 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

106 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

107 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]

108
109 # Convert byte sequences to strings for sending

110 ethernet_hdr_str = "".join(map(chr, ethernet_hdr))

111 ip_hdr_str = "".join(map(chr, ip_hdr))

112 icmp_hdr_str = "".join(map(chr, icmp_hdr))

113 icmp_data_str = "".join(map(chr, icmp_data))

114
115 # Send the frame

116 s.send(ethernet_hdr_str + ip_hdr_str + icmp_hdr_str + icmp_data_str)

100 APPENDIX E. PYTHON SOCKETS EXAMPLES

Appendix F

Packet Formats and Constants

F.1 Packet Formats

2
0

 B
y
te

s

0 4 8 14 16 19 31

Total Length

Fragment OffsetFlagsIdentification

Protocol Header Checksum

Source IP Address

Data

Destination IP Address

Time To Live

Version HLength DiffServ ECN

Options + Padding (optional)

Figure F.1: IP Datagram Format

2
0

 B
y
te

s

0 4 8 16 31

Sequence Number

Acknowledgement Number

HLength Flags Advertised Window

Destination Port

Data

Options + Padding (optional)

Urgent PointerChecksum

Reserved

Source Port

Figure F.2: TCP Segment Format

File: Steve/Courses/2014/s2/its332/packets.tex, r3463

101

102 APPENDIX F. PACKET FORMATS AND CONSTANTS

8
 B

y
te

s

0 16 31

Destination PortSource Port

Total Length Checksum

Data

Figure F.3: UDP Datagram Format

4 Bytes2 Bytes6 Bytes 6 Bytes 1500 Bytes

46 to

Address

Destination

Address

Source

Type

Ether
Data

CRC

Checksum

Figure F.4: Ethernet Frame Format

F.2 Port Numbers and Status Codes

IANA and W3C maintain the official list of port numbers, protocol numbers and HTTP
status codes.

Port numbers used by common applications include:

20 FTP data transfer

21 FTP connection control

22 SSH, secure remote login

23 TELNET, (unsecure) remote login

25 SMTP, email transfer between servers

53 DNS, domain name lookups

67 DHCP server

68 DHCP client

80 HTTP, web servers

110 POP3, client access to email

123 NTP, network time

443 HTTPS, web servers with secure access

520 RIP, routing protocol

631 IPP, Internet printing

1503 Windows Live Messenger

http://www.iana.org/assignments/service-names-port-numbers/
http://www.iana.org/assignments/protocol-numbers/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

F.2. PORT NUMBERS AND STATUS CODES 103

1512 WINS, Windows naming service

3306 MySQL database server

3723 Blizzard games

5060 SIP, voice/video signalling

5190 ICQ, instant messaging

8080 HTTP proxy server

Protocol numbers for commonly used transport protocols include:

1 ICMP

2 IGMP

6 TCP

17 UDP

33 DCCP

41 IPv6 encapsulation

47 GRE

89 OSPF

Status codes and their meaning for common HTTP responses include:

100 Continue Client should continue to sent the request

200 Ok Requested content is included in response

301 Moved Permanently This and all future requests should be redirected to the
given URL

304 Not Modified Requested content has not been modified since last access

401 Unauthorized Requested content requires authentication that has not been pro-
vided or is incorrect

403 Forbidden Request is ok, but not allowed to access the requested content

404 Not Found Requested content could not be found on server

503 Service Unavailable Requested server is currently unavailable

104 APPENDIX F. PACKET FORMATS AND CONSTANTS

	Introduction
	About ITS332 Information Technology Lab II
	About the Lab Manual
	How to Use the Manual
	Notation
	Other Resources

	Completing the Tasks
	Making Notes
	Drawing Message Sequence Diagrams
	Drawing Packets
	Network Design
	What Not To Do

	Further Information Sources

	Ubuntu Linux
	What is Ubuntu Linux?
	Why Not Microsoft Windows?

	Common Operations
	Starting Ubuntu Linux
	User Accounts and Login
	Window System
	Command Line Shell
	Text and Source Code Editing
	Applications

	Advanced Operations
	Installing Software
	Compiling C Code

	Tasks

	Wireshark
	Packet Capture
	Capturing with tcpdump
	Viewing and Analysing Packets with Wireshark
	Viewing Captured Traffic
	Analysis and Statistics
	Filters

	Tasks

	Client/Server Applications
	Clients, Servers and Addressing
	Addresses and Ports
	Servers
	Clients

	Web Browsing
	Server Configuration Files
	Controlling the Web Server
	Creating Web Pages
	Server Logs
	Basic Authentication

	Remote Login
	Tasks

	Networking Tools
	Operating Systems and Tool Interfaces
	Viewing Network Interface Information
	Viewing Ethernet Interface Details
	Testing Network Connectivity
	ping at SIIT

	Testing a Route
	Converting Between Domain Names and IP Addresses
	Viewing the Routing Table
	Converting IP Addresses to Hardware Addresses
	Network Statistics
	Viewing More Network Information: Useful Files
	Automatic IP Address Configuration
	How Does DHCP Work?
	Viewing Interface Information
	Viewing DHCP Information
	Setting a Static IP Address

	Tasks

	Layer 2 Networking
	Peer-to-Peer Networks
	Background
	Ethernet Cabling

	Switched Network
	Tasks

	Layer 3 Networking
	Routers
	Routers and Hosts
	Enabling Routing
	Editing the Routing Table

	Tasks

	Firewalls
	Understanding Firewalls
	How Do Firewalls Work?
	Firewall Rules
	Firewalls and Servers
	Firewalls on Linux: iptables

	Tasks

	Socket Programming
	Programming with Sockets
	Servers Handling Multiple Connections
	Further Explanation

	Tasks

	Acronyms and Units
	Acronyms
	Units

	Lab Facilities
	Work Stations
	Network Infrastructure

	Ubuntu Reference Material
	Commands
	Files and Directories

	C Sockets Examples
	TCP Sockets in C
	Example Usage
	TCP Client
	TCP Server

	UDP Sockets in C
	Example Usage
	UDP Client
	UDP Server

	Python Sockets Examples
	TCP Sockets in Python
	Example Usage
	TCP Client
	TCP Server

	UDP Sockets in Python
	Example Usage
	UDP Client
	UDP Server

	Raw Sockets in Python

	Packet Formats and Constants
	Packet Formats
	Port Numbers and Status Codes

