
ITS413 - INTERNET APPLICATION AND TECHNOLOGY

TCP Performance
ment

Assignment 2

Sweta Dwivedi
Taskinul Haque
Timon Dressler

2/14/2011

2

TCP Performance measurement using application/ protocol parameters

Experiments 1 - Changing window size and throughput

In this experiment, the window size was varied to see the effects of the received window buffer size on throughput.

Network Technology: 1-Gbit ethernet card

Methodology:
(1) Run iperf to test default values to get the maximum throughput
(2) Set the time interval (-t 30) and port number (-p 5555) to test fairly
(3) Change the window buffer size (-w) at the receiver using iperf (sudo iperf -s -p 5555 -w 500 [KB] -t 30)*

*The OS always sets the window buffer size to the double of the value specified.

Parameters: Time interval (0-30 ms, constant), Client window buffer size (16 KB, constant) , Server window buffer size (10 –
256 KB).

Result: As the window buffer size at the receiver kept increasing the throughput also increased, while reduced buffer size
showed a decrease in the throughput.

Table 1.1 - Effect of Window Buffer Size on Throughput
 Throughput (Mb/s)

Window Buffer
Size (KB)

Trial 1 Trial 2 Trial 3 Average

9.77 138 186 151 158.333333
19.5 218 216 216 216.666667
39.1 383 385 386 384.666667
58.6 665 666 666 665.666667
85.3 941 937 936 938
97.7 903 901 904 902.666667
117 932 930 932 931.333333
137 935 933 935 934.333333
195 936 935 935 935.333333
256 936 936 936 936

PLEASE NOTE: For all Tables refer to Chart for visualization with Corresponding Table number (i.e. Table 1.1 = Chart 1.1)

Explanation
Although by performing the test with the default window buffer size at the receiver, we could achieve throughputs of
nearly 936 Mbits/s, by reducing our buffer size we could achieve only lower values that is due the fact that even though
the capacity of our network maybe higher, we are limited by the window buffer size as it tells us the amount of data or size
of data that the receiver can accept at a given time. Hence the higher the buffer size the higher throughput achievable
whereas lower the buffer size lower the throughput.

3

Experiment 2 – Read / Write length at buffer and throughput

In this experiment, the read/write length at the buffer on the receiver was varied to see the effect on the throughput.

Methodology:

(1) Change the window buffer size to default 85.3 KB
(2) Run iperf to test default values to get the maximum throughput
(3) Set the time interval (-t 30) and port number (-p 5555) to test fairly
(4) Change the length of read/write (-l) at the receiver using iperf (sudo iperf -s -p 5555 -l 8 [KB] -t 30)

Parameters: Time interval (0-30 ms, constant), Client window buffer size (16 Kb, constant), Server window buffer size (85.3
KB, constant), Read/write length at buffer receiver (1B – 10KB).

Result: Increasing the length of read/write at the buffer on the receiver increased the throughput whereas decreasing the
length of read/write at the buffer decreased the throughput.

Table 2 - Effect of Read Length on Throughput
 Throughput (Mb/s)

Read Length (KB) Trial 1 Trial 2 Trail 3 Average
10 937 937 937 937

8 936 937 937 936.667
4 937 937 937 937
1 937 937 937 937

0.256 936 937 936 936.333
0.128 937 937 936 936.667
0.064 793 832 831 818.667
0.032 423 413 446 427.333
0.016 221 225 220 222
0.008 112 115 111 112.667
0.004 53.3 53.1 52.2 52.8667
0.001 15.1 14.9 14.8 14.9333

Explanation
The default buffer read/write length at the receiver is 8KB which explains that the data or packets can be read by the
application in 8KB segments. By increasing the read/write length of the buffer, we increase the amount/size of data read
per segment which means the buffer gets cleared faster and we get more space in the buffer to receive more packets and
since tcp uses sliding window flow control, even if we get an ACK for even a single frame, the sender can send the next
frame without waiting.

Although varying the value of the read/write buffer size by a few KB doesn't show any significant changes unless they are
halved because the read length is still very fast to make a difference in throughput, until the length value is set to around
64B and halved further to show an effect on the throughput.

4

TCP Performance measurement using network/link conditions (tc)

In this experiment, the link data rate is being varied to measure the effects on the throughput.
Experiment 3 – Link Data rate and Throughput

Methodology:
(1) Change the length read/write back to the default value 8 [KB]
(2) Set the Link Data rate using: sudo tc qdisc add dev etho root tbf rate 500 Kbit latency 50ms
 where the latency is the maximum wait (delay) for the packet
(3) Replace the Link Data rate by using replace instead of the command add above
(4) To get more accurate results set the time interval in iperf to be 60 secs

Parameters: Time interval (0-30ms, constant), Data Rate (100Kb - 500Mb)

Result: Increasing the data rate increases the value of throughput and decreasing the value of throughput decreases the
throughput.

Table 3 - Effect of Data Rate on Throughput
Data Rate (Mb/s) Throughput (Mb/s)

0.1 0.0964
0.3 0.291
0.5 0.478
1 0.954
5 4.76
10 9.53
50 37.9
100 61.1

Explanation
The data rate tells us about the capacity of the network, so by setting the data rate we are also defining the upper limit at
which the data can be sent. In our experiment, we manually specify the data rate at the client and observe an increasing
trend starting from lower values but however the throughput will stabilize after a certain data rate because it would reach
the maximum throughput achievable.

5

Experiment 4 – Link Delay and Throughput

In this experiment, the link delay was tested using 2 methods:
(1) Using the random function to pick one value from the desired range to stimulate real network delays (Eg. 100Ms
 +/ - 10)
(2) Setting the delay manually without specifying the range parameter. (Eg. 100ms)

Methodology:
(1) Delete the previously set data rate by using the same command as adding data rate by replacing add with del
 option
(2) For using a random delay with a range (client), use command:
 sudo tc qdisc add dev eth0 root netem delay 100ms 10ms (10ms adds range eg. 90 – 110)
(3) Setting the delay parameter without a range, use same command as above without specifying 10 ms of range.
(4) Test desired delay is being used by ping.

Parameters: Time interval (0-60ms, constant), Link Delay (0-100ms), RTT
Result: Increasing the link delay decreases the throughput and decreasing the link delay increases the throughput.

Table 4.1 - Effect of Added Delay on Throughput
Delay (ms) Throughput (Mb/s)

0 940
1 927
2 888
5 715
6 695
7 678
8 670
9 657

10 649
20 754
30 512
40 386
50 361

100 180

0ms Delay RTT = 0.157

Table 4.2 - Using Random Range of delays and its affect on throughput

 Throughput (Mb/s)
Range of Delays (ms) RTT(ms) Trial 1 Trial 2 Trial 3 Average

0-2 0.919 930 928 920 926
0-5 2.087 412 417 412 413.666667
0-10 6.101 205 201 202 202.666667
0-20 10.431 95.8 92.2 97 95
20-40 32.374 89.8 87.5 96.8 91.3666667
40-60 50.23 92 79.2 82.9 84.7
60-80 70.556 66.9 72.6 75.9 71.8
80-100 89.541 69.4 66.8 70.6 68.9333333

Explanation

6

Changing the link delay parameter in our experiment specifies adding different delay in between the packets that are
being sent from the client. By adding a fixed delay between each packet being send we are actually increasing the Round
Trip Time (RTT) which is the time taken for the frame to be sent and the ACK of that frame to be received. As the RTT
increases the throughput decreases because the throughput is the measurement of the amount of time spent in sending
useful data and since here we're actually spending the time waiting between packets our throughput gets lower with
increased delays.

Experiment 5– Packet Drop % and Throughput

In this experiment, the packet drop % is being varied to see the effect on the throughput to demonstrate the effect of
packet loss on throughput in the real network.
The experiment could be demonstrated using tc or iptables.

Iptables: iptables acts as a firewall, that can contain rules like how many packets to drop or allow for incoming or outgoing
packets.

Methodology (iptables):

(1) Remove the delay using the same command as adding delay, replace add with del
(2) Input a rule to drop a certain percentage of incoming packets using command:
 sudo iptables -A INPUT -m statistic --mode random --probability 0.03 -j DROP
(3) Check if the rule gets added to input table: sudo iptables -L
(4) Checking whether the packets are being dropped using iperf: iperf -c 192.168.1.5 -u -t 60
(5) Use iperf to test with normal tcp packets remove -u option from the command above

Parameters: Time interval (0-60ms, constant), Packet drop % (0.5 – 70)

Result: The increase in the packet drop % decreases the throughput whereas less packet drop % results in a higher
throughput

Table 5.0 - Dropping Packets and Its effect on
Throughput

Packet Drop probability (%) Throughput (Kb/s)
0.1 454
0.5 243

1 158
5 17.3

10 3.12
20 0.54
30 0.231
40 0.115
50 0.0627
60 0.00313
70 0.000897

Explanation
In real networks there are always few packet drop occurring in the routers due to the congestion in the network.
Congestion is caused by many sources trying to send data at a high rate. Here the packet loss or packet drop is configured
manually to stimulate the real networks, the packet loss reduces the throughput due to the retransmissions of the packets
which keeps increasing with the increasing packet loss. Retransmissions also increases the RTT due to the wait for time
out.

7

Experiment 6 – Multiple TCP sessions and Throughput

In this experiment, multiple tcp sessions are started to see the effect of parallel tcp sessions on throughput to demonstrate
the real life situation of running multiple applications which uses tcp

Methodology:
(1) Remove the packet loss % to test the effect of multiple sessions without the effect of packet loss
 using same command as adding packet loss but replacing -A with -D (delete)
(2) Check the rules for input table is gone (iptables -L)
(3) Set the multiple sessions in iperf (-P option) at the client using: iperf -c [IP address] -P 2 -t 60

Parameters: Time interval (0-60s, constant), Multiple session (-P 1 – 5)

Result: The bandwidth was divided equally amongst all sessions as long as no packet loss was added

Table 6.0 - Multiple Session running Simultaneously and its effect on Throughput
 Throughput (Mb/s)
Session Type Session 1 Session 2 Session 3 Session 4 Session 5 Total Average
1 TCP 941 941 188.2
2 TCP 475 468 942 188.6
3 TCP 316 315 312 943 188.6
4 TCP 233 239 238 234 943 188.8
5 TCP 193 194 183 183 190 942 188.6
Same Tests as above changing Packet loss to 0.5%
1 TCP 252 252 50.4
2 TCP 199 195 394 78.8
3 TCP 190 190 188 568 113.6
4 TCP 182 182 181 182 728 145.4
5 TCP

Explanation
In real life networks there might be multiple tcp sessions created by different applications and it's important that all get to
share the bandwidth equally, although iperf used different data sizes but not very different from each other. Hence the
bandwidth was almost the same for all the sessions and since all other connections were turned off there wasn't any other
Background traffic either.

Nonetheless, when packet loss values were added the average throughput of each session decreased dramatically refer to
Chart 6.0. addding packet loss gave us a negative trend; so when more sessions existed more packets were lost thus
decreasing the average throughput of each session, where as without loss all packets shared the BW equally.

8

Experiment 8 – Effects of Multiple TCP & UDP sessions on Throughput

This experiment is somewhat similar to the multiple tcp sessions except that there are udp sessions running in parallel as
well.

Methodology:
(1) The server or receiver has to listen to a specific port number and listen to both udp and tcp packets
 at the same port number using: iperf -s -u -p 5zzz & iperf -s -p 5zzz
(2) The client has to send both udp and tcp packets to the same port number using:
 iperf -c [IP address] -u -t 30 -P [# sessions] (udp) & iperf -c [IP address] -t 30 -P [# sessions]
(3) The client needs to keep varying the number of tcp and udp sessions to see the effects on the throughput

Parameters: Time interval [0-30s, constant], -P [1-5]

Result: The TCP sessions get more bandwidth compared to the udp sessions

Table 6.1 - Simultaneous UDP & TCP Sessions and its Effect on Throughput
 Throughput (Mb/s)
 TCP Sessions UDP Sessions UDP Packet Loss
1TCP, 1UDP 941 1.05
2TCP, 1UDP 471 1.05
 469
3TCP, 1UDP 317 1.05
 316
 308
1TCP, 2UDP 940 1.05
 1.05 0.04%
2TCP, 2UDP 464 1.05
 474 1.05 0.02%
3TCP, 3UDP 321 1.05
 368 1.05 0.04%
 310 1.05

Table 6.2 - Increased UDP and TCP Sessions
 Throughput (Mb/s)
Dramatic Increase TCP Session Sum UDP Session (min) UDP Max Packet Loss
5TCP, 5UDP 937 1.05
10TCP, 5UDP 941 1.04 1.30%
15TCP, 5UDP 939 1.02 2.00%

Explanation

The UDP packets are much smaller in size due to less overheads and no retransmission schemes involved
compared to the TCP sessions

9

Experiment 9 – Constant BDP vs Changing window buffer size vs Throughput

The effects of bandwidth delay product and window size on the throughput

Methodology:
(1) Keeping the Bandwidth delay product constant by choosing a fixed delay 10ms, add the delay of 10 ms
(2) Changing the window buffer size each time using iperf
(3) Calculate Bandwidth delay product using the data rate and delay and observe the effects of bandwidth delay
 product to window size and throughput

Parameters: Time interval (0-60ms, constant), Delay (10ms), Window buffer size (9.77 – 256 KB)

Result: As the window buffer size increases so does the throughput but the throughput isn't reaching the maximum value
due to the window buffer size limitations even though the BDP is so much larger.

Table 1.2 - Varying Window Buffer Size with Constant BDP
and its affect on Throughput
BDP (KB) Window Buffer Size (KB) Throughput (Mb/s)

1250 9.77 2.29
19.5 9.13
39.1 19.6
58.6 18.6
78.1 26.2
97.7 43.4
195 88.7
256 95.6

Explanation
The Bandwidth delay product (BDP) = data rate * delay
BDP = 1000000 Kb/s * 0.01s
BDP = 10000 Kb
BDP = 1250 KB

Since a delay of 10 ms was chosen to keep the BDP constant our BDP in KB is 1250 KB and our window buffer size is
increased gradually to see the effects on the throughput.
The size of the BDP delay product is actually larger than that of the maximum window buffer size allowed. So here even
though we are allowing our client to send a data of 1250 KB before receiving an ACK but since our buffer size is smaller, we
are limiting the amount of data that can be sent therefore achieving lower throughputs.

10

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (M

b/
s)

Window Buffer Size (KB)

Chart 1.0 - Window Buffer Size Vs Throughput

11

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (M

b/
s)

Read/Write Buffer Length (KB)

Chart 2.0 - Read Buffer Length Vs Average Throughput

12

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (M

b/
s)

Data Rate (Mb/s)

Chart 3.0 - Datarate Vs Bandwidth

13

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (M

b/
s)

Added Delay (ms)

Chart 4.1 - Added Delay Vs Throughput

14

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
 (K

b/
s)

Packets Dropped (%)

Chart 5.0 - Effect of Dropping Packets on Throughput

15

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6

Th
ro

ug
hp

ut
 (M

b/
s)

Number of TCP Sessions

Chart 6.0 - Effect of Multiple TCP Sessions

0.5% packets are dropped

No packet drop

