

Maximum Signal Strength of Each Access Point on 5FI. of Sirindhralai Building

Location	RSSI	Strength	MAC Address	SSID	Channel	Max Rate
3509	-47	Medium	00:A0:C5:73:62:56	wsiit	11	11
3510	-41	Medium	00:A0:C5:73:62:56	wsiit	11	11
3511	-42	Medium	00:A0:C5:73:62:56	wsiit	11	11
3501-1	-44	Medium	00:A0:C5:D4:77:D9	wsiit	7	11
3501-2	-52	Medium	00:A0:C5:D4:77:D9	wsiit	7	11
3506-1	-48	Medium	00:A0:C5:73:62:56	wsiit	11	11
3506-2	-44	Medium	00:A0:C5:73:62:56	wsiit	11	11
3507-1	-36	Strong	00:A0:C5:73:62:56	wsiit	11	11
3507-2	-38	Strong	00:A0:C5:73:62:56	wsiit	11	11
H1	-38	Strong	00:A0:C5:73:62:56	wsiit	11	11
H2	-21	Strong	00:A0:C5:73:62:56	wsiit	11	11
H3	-48	Medium	00:A0:C5:73:62:56	wsiit	11	11
H4	-59	Medium	00:A0:C5:73:62:56	wsiit	11	11
H5	-46	Medium	00:A0:C5:D4:77:D9	wsiit	7	11
H6	-37	Strong	00:A0:C5:D4:77:D9	wsiit	7	11
Lift	-63	Weak	00:A0:C5:73:62:56	wsiit	11	11

Information of Access Points Available on 5th Floor of Sirindhralai Building

MAC Address	SSID	Channel	Bandwidth (Mbps)
00:19:CB:4F:0A:0E	wsiit	11	54
00:19:CB:4F:0A:14	wsiit	5	54
00:19:CB:7E:8F:FE	wsiit	6	54
00:19:CB:4F:09:C3	wsiit	9	54
00:23:F8:6E:C0:CC	wsiit	2	300 (N)
00:23:69:3A:ED:29	wsiit	12	54
00:23:69:3A:EE:DC	wsiit	9	54
00:23:69:3A:F5:CC	wsiit	10	54
00:23:69:3A:F5:D2	wsiit	7	54
00:23:69:3A:F5:FC	wsiit	11	54
00:23:69:3A:F6:92	wsiit	8	54
00:A0:C5:73:62:56	wsiit	11	11
00:A0:C5:D4:77:D0	wsiit	11	11
00:A0:C5:D4:77:D7	wsiit	7	11
00:A0:C5:D4:77:D9	wsiit	7	11
00:A0:C5:D4:77:DB	wsiit	11	11
00:A0:C5:D4:77:DC	wsiit	1	11
00:A0:C5:D4:77:DF	wsiit	5	11

Signal Strength of Access Points Available on 5th Floor of Sirindhralai Building (Categorized by MAC Address of Access Points)

00:19:CB:4F:0A:0E

Location	RSSI	Strength
3510	-89	Very Weak
3509	-86	Very Weak
3507-1	-87	Very Weak

00:19:CB:4F:0A:14

Location	RSSI	Strength
3510	-88	Very Weak

00:19:CB:7E:8F:FE		
Location	RSSI	Strength
3507-1	-84	Very Weak

00:19:CB:4F:09:C3

Location	RSSI	Strength
H2	-91	Very Weak

00:23:F8:6E:C0:CC

Location	RSSI	Strength
H4	-84	Very Weak
3501-1	-84	Very Weak
3501-2	-87	Very Weak

00:23:69:3A:ED:29

Location	RSSI	Strength
H2	-86	Very Weak
H3	-86	Very Weak
H4	-88	Very Weak
3511	-90	Very Weak
3510	-88	Very Weak

00:23:69:3A:EE:DC

Location	RSSI	Strength
H1	-87	Very Weak
H2	-86	Very Weak
H3	-86	Very Weak
H4	-87	Very Weak
H5	-89	Very Weak
3511	-87	Very Weak
3510	-87	Very Weak
3509	-88	Very Weak

00:23:69:3A:F5:CC

Location	RSSI	Strength
H1	-88	Very Weak
H2	-82	Very Weak
H3	-88	Very Weak
H4	-83	Very Weak
3511	-87	Very Weak
3510	-83	Very Weak
3509	-88	Very Weak

00:23:69:3A:F5:D2

Location	RSSI	Strength
H1	-87	Very Weak
H2	-86	Very Weak
H4	-90	Very Weak
3511	-89	Very Weak
3510	-88	Very Weak

00:23:69:3A:F5:FC

Location	RSSI	Strength
H1	-90	Very Weak
H2	-84	Very Weak
H3	-88	Very Weak
H4	-83	Very Weak
Lift	-90	Very Weak
3511	-87	Very Weak
3510	-83	Very Weak
3509	-90	Very Weak

00:23:69:3A:F6:92

Location	RSSI	Strength
H1	-87	Very Weak

00:A0:C5:73:62:56

Location	RSSI	Strength
H1	-38	Strong
H2	-21	Strong
H3	-48	Medium
H4	-59	Medium
H5	-62	Weak
H6	-60	Weak
3507-1	-36	Strong
3507-2	-38	Strong
Lift	-63	Weak
3511	-42	Medium
3510	-41	Medium
3509	-47	Medium
3501-1	-87	Very Weak
3501-2	-79	Weak
3506-1	-48	Medium
3506-2	-44	Medium

00:A0:C5:D4:77:D0

Location	RSSI	Strength
H1	-88	Very Weak
H2	-87	Very Weak
H3	-83	Very Weak
H4	-70	Weak
H5	-56	Medium
H6	-63	Weak
3511	-90	Very Weak
3510	-86	Very Weak
3501-1	-60	Weak
3501-2	-71	Weak

00:A0:C5:D4:77:D7

Location	RSSI	Strength
H4	-90	Very Weak
H5	-83	Very Weak
H6	-83	Very Weak
3501-1	-84	Very Weak
3501-2	-84	Very Weak

00:A0:C5:D4:77:D9

Location	RSSI	Strength
H1	-69	Weak
H2	-66	Weak
H3	-67	Weak
H4	-67	Weak
H5	-46	Medium
H6	-37	Strong
3507-1	-84	Very Weak
3507-2	-87	Very Weak
Lift	-80	Very Weak
3511	-73	Weak
3510	-79	Weak
3509	-76	Weak
3501-1	-44	Medium
3501-2	-52	Medium
3506-1	-86	Very Weak
3506-2	-83	Very Weak

00:A0:C5:D4:77:DB

Location	RSSI	Strength
H1	-61	Weak
H2	-52	Medium
H3	-58	Medium
H4	-72	Weak
H5	-75	Weak
H6	-76	Weak
3507-1	-63	Weak
3507-2	-61	Weak

Lift	-80	Very Weak
3511	-63	Weak
3510	-58	Medium
3509	-67	Weak
3506-1	-57	Medium
3506-2	-63	Weak

00:A0:C5:D4:77:DC

Location	RSSI	Strength
H4	-77	Weak
H5	-86	Very Weak
H6	-89	Very Weak
Lift	-83	Very Weak
3501-1	-83	Very Weak
3501-2	-88	Very Weak

00:A0:C5:D4:77:DF

Location	RSSI	Strength
H1	-84	Very Weak
H2	-89	Very Weak
3507-1	-86	Very Weak
3507-2	-88	Very Weak
3510	-89	Very Weak
3506-1	-87	Very Weak

Test Setup

There are several steps in test setup for finding the maximum throughput of using IEEE 802.11b only, IEEE 802.11g only, and the mixture of the two standards. All steps are divided into two sections which are **"Preparation"** and **"Performing Test"**. The former part regards how to configure the router to use IEEE 802.11b, IEEE 802.11g, or the mixture and how to prepare the environment for performing test; and the latter part states how to find the maximum throughput by using **iperf** and **Command Prompt** of Windows.

Note that in this test, **Linksys WRT54GL** wireless router is used. One PC is used as a server and two laptops are used as clients. The server-side PC is connected to the router via Ethernet cable and the client-side laptops associate the router through wireless connection. The PC and both laptops run iperf on Windows. Each client-side laptop and the router are situated 0.5 meter apart and Channel 9 is used.

Preparation

- 1. Download iperf from internet to both client laptops and a server PC.
- 2. Put the client laptops half meter away from the router.
- 3. Connect Ethernet cable from the router to the server PC.
- 4. Wait for the server PC to automatically connect to the router.
- 5. Using the server PC, open web browser and go to 192.168.1.1.
 - a. Remember "Starting IP Address" (192.168.1.100)

Setup	Setup Wirele	35	Security		Access Restrictions	Applications & Gaming	Adminia	tration	Status
	Ваєю Setup	1		DUNS	1	WAC Address Clone	1	Лочапсе	d Routing
Internet Sctup									
nternet Connection Type	Automatic Co	nf gura:	ion DH	CP -	1)		Auto	natic Co	nFiguration - ling is read
Optional Settings	Router Name	WR	T5/IGL		_		comm opera	only used tors.	by Cable
(required by some ISPs)	llost Name						Host	Name : E	nter the host
	Domain Name						патс	provided (by your ISP
	MTL:	Auto	•				Dom: doma	un Name n name pr	: Enter the ovided by you
	Size:	160	U				ISP. More		
Network Setup							10.00		
Router IP	Local IP Address	_92	68 .	1	1		Loca	IP Addro	aa : This is t
	Subnet Maex	255	.255.25	5.0	+		adara	sa er inci	iou.er.
Network Address		775283					suone	et waek 1 mask of	the router
Server Settings (DHCP)	DHCP Server.	(@) F	nable 🔘	Disabl	e				
	Address	192.1	68.1C	D			DIICE	Server:	Allows the
	DHCP Uscra:	50	_				router addre	to manag sses.	e your P
	Client Lease Time:	C	nin de	s (0 me	ons one day)		Start	na III Ad	dress the
	Static DNS 1:	ſ	ſ	٦	1		addra	EE YOU W	ould like to sta
	Static DNS 2	C	C	Э	Э		with.		
	Static DNS 3:	C	0	Э	2		Maidi	num nur	nber of DHCI

Figure 1: Linksys WRT54GL Wireless Router Configuration (Network Setup Page)

- b. Click at "Wireless" tab and change "Wireless Network Mode" to G-only
- c. Change SSID to your desirable name (in this case "ABC")
- d. Change "Wireless Channel" to the channel not used by nearby nodes
- e. Click "Save Settings" and then click "Continue" button

(Wireless Tab)

6. Using the client computer, connect to "ABC" network via a wireless connection.

Performing Test for One Source (Client)

 For PC and laptop, open "Command Prompt" by going to Start > All Programs > Accessories > Command Prompt

a Administrator Command Promot		
Microsoft Windows (Ucraino 6.1.76081) Copyright (c) 2009 Nicrosoft Corporation.	All eights recerved.	-
C:NUsersNuser)_		5

Figure 3: Command Prompt of Windows

2. For the server PC, type in the following command line into the command prompt and press "Enter" on keyboard to execute the command,

iperf.exe −*s* −*u*

, where -s denotes using this computer as a server and -u denotes using UDP.

- This command makes the PC starts listening to the transmission of data to its ports.
- 3. For one of the client laptop, type in the following command line into the command prompt and press "Enter" on keyboard to execute the command,

iperf.exe –*c* Starting_IP_Address –*u* –*b* 5*m*

where -c denotes using this computer as a client ,
-u denotes using UDP,
-b denotes bandwidth or sending rate,
Starting_IP_Address is an IP address of the access point,
5m is a value of bandwidth (in Mbps) which will be changed during the test.

- 4. After ten seconds, look at the value displayed on Command Prompt window. Note down the measured throughput which is displayed as "Bandwidth" in Command Prompt window.
- 5. Repeat step 3 and step 4 but change the sending rate from 5 Mbps to the multiples of five by changing 5m to 10m, 15m, 20m, 25m, 30m, ... respectively until the outstanding value of throughput appears.

For example, the results of measured throughput are as follow:

Sending Rate	Measured Throughput (Mbps)
5m	11
10m	15
15m	12
20m	13

15 Mbytes Transfer of bandwidth of 15 Mbps is the outstanding value and we run more tests for the value around 10 Mbps, i.e. 8, 9, 10, 11, 12, to confirm that it yields the maximum throughput.

Performing Test for Two Sources (Clients)

Test for two sources is performed after the test for one source since the objective is to find the maximum throughput and realize how using two sources differs from using one source. Note that two laptops are used in this section.

1. For PC and both laptops, open "Command Prompt" by going to Start > All Programs > Accessories > Command Prompt

However, for PC, two Command Prompt windows are opened.

2. For the server PC, type in the following command line into *the first command prompt window* and press "Enter" on keyboard to execute the command,

iperf.exe –*s* –*u* –*p* 1111

, where -s denotes using this computer as a server, -u denotes using UDP, and -p denotes the port number for sending packet

This command makes the PC starts listening to the transmission of data on port with port number 1111.

3. For the server PC, type in the following command line into *the second command prompt window* and press "Enter" on keyboard,

iperf.exe –*s* –*u* –*p* 2222

This command makes the PC starts listening to the transmission of data on port with number 2222.

** Step 4 and Step 5 are performed simultaneously.

4. For one of the client laptop, type in the following command line into the command prompt and press "Enter" on keyboard to execute the command,

iperf.exe –c Starting_IP_Address –u –b 5m –p 1111

where -c denotes using this computer as a client , -u denotes using UDP, -b denotes bandwidth or sending rate,

Starting_IP_Address is an IP address of the access point,

5m is a value of bandwidth (in Mbps) which will be changed during the test,

-*p* denotes port number which the packet is sent to.

5. For another client laptop, type in the following command line into the command prompt and press "Enter" on keyboard at the same time as Step 4,

iperf.exe –*c* Starting_IP_Address –*u* –*b* 5*m* –*p* 2222

- 6. After ten seconds, look at the value displayed on both Command Prompt windows shown in server PC. Note down the values of measured throughput which are displayed as "Bandwidth" in both Command Prompt windows.
- 7. Repeat step 4 through step 6 but change the sending rate from 5 Mbps to the multiples of five by changing 5m to 10m, 15m, 20m, 25m, 30m, ... respectively until the outstanding value of throughput appears.

For example, the results of measured throughput are as follow:

Sending Rate	Measured Throughput (Mbps)
5m	11
10m	15
15m	12
20m	13

15 Mbytes Transfer of bandwidth of 15 Mbps is the outstanding value and we run more tests for the value around 10 Mbps, i.e. 8, 9, 10, 11, 12, to confirm that it yields the maximum throughput.

Final Note

For the test using two sources, the value of maximum throughput at each sending rate is calculated from average of the two maximum throughput values collected from the test at that particular sending rate.

After the maximum throughput of IEEE 802.11g (G-only) is found for both using one source and using two sources, we switch to find the maximum throughput for IEEE 802.11b (B-only) by repeating step 5 of Preparation section but changing "Wireless Network Mode" from "G-only" to "Bonly"; and repeating all steps of Performing Test for One Source section and Performing Test for Two Sources section.

After the maximum throughput of IEEE 802.11b (B-only) is found for both using one source and using two sources, we switch to find the maximum throughput for the mixture of IEEE 802.11b and IEEE 802.11g by repeating step 5 of **Preparation** section but changing "Wireless Network Mode" from "B-only" to "mixed"; and repeating all steps of **Performing Test for One Source** section and **Performing Test for Two Sources** section.

Test Results and Discussions

Figure 4: Sending Rate vs. Throughput for IEEE 802.11b only

Figure 6: Sending Rate vs. Throughput for Mixture of IEEE 802.11b and IEEE 802.11g

Figure 7: Maximum Throughput vs. Number of Clients Used

Discussion

All three plots of sending rate vs. throughput for different standards (i.e. IEEE 802.11b, IEEE 802.11g, and the mixture of the two standards) share the same trend which is the measured throughput increases along with increasing sending rate until reaching a maximum value of throughput. At the maximum value of throughput, value of throughput remains constant.

In each plot, there are two lines of plots shown. The upper blue line denotes the value of throughput in the situation where one client associates with the router through a wireless connection. The lower green line denotes the value of throughput in the situation where two clients associate with the router through a wireless connection.

All three plots of sending rate vs. throughput for different standards also share the same difference between the blue line and the green line. This difference points out that the values of throughput of when two clients associate with the router is approximately the half of those of when only one client associates with the router. This is because, when two clients simultaneously request the server to send packets to them, the throughput is shared between two of them.

For Figure 7, the blue bar denotes the maximum throughput of using one client; and the cyan bar denotes the maximum throughput of using two clients. For each standard (i.e. IEEE 802.11b, IEEE 802.11g, and mixed), the height of the cyan bar is approximately the half of the height of the blue bar since the throughput is shared between two clients when two clients send the packet simultaneously. Moreover, according to Figure 7, maximum throughput of using IEEE 802.11b + IEEE 802.11g are relatively close to those of using IEEE 802.11g since the using IEEE 802.11b + IEEE 802.11g can reach the higher maximum throughput between the two standards, i.e. the maximum throughput of IEEE 802.11g.

Results of Measured Throughput and Maximum Throughput (Bold Number) for Both Using One Source (Blue Table) and Two Sources (Orange Table) at Different Bandwidth Specified by Server Computer

IFFF	802	11h	(One	Client`	۱
ILLL	002.	TTD		CIICIT	,

		Lost	Total
Sending Rate (Mbps)	Throughput (Mbps)	Datagrams	Datagrams
5	4.99	0	4253
10	5.72	0	4865
15	5.66	0	4825
20	5.73	0	4871
25	5.67	0	4848
30	5.71	0	4874
35	5.54	0	4728
36	5.69	0	4880
37	5.64	0	4834
38	5.65	0	4832
39	5.57	0	4759
40	5.79	0	4959
41	5.66	0	4857
42	5.70	0	4873
43	5.78	0	4941
44	5.70	0	4886
45	5.72	0	4912
50	5.62	0	4792
55	5.66	0	4818
60	5.68	0	4833

IEEE 802.11b (Two Clients)

		Lost	Total
Sending Rate (Mbps)	Throughput (Mbps)	Datagrams	Datagrams
5	2.59	0	2213
10	2.84	0	2426
15	2.96	0	2518
20	3.05	0	2596
25	3.02	0	2572
30	2.92	0	2490
35	3.14	0	2732
36	3.21	0	2760
37	3.10	0	2636
38	3.09	0	2632
39	3.31	0	2851
40	3.14	0	2669
41	2.59	0	2224
42	3.40	0	2905
43	3.24	0	2788
44	2.94	0	2507
45	3.06	0	2603

50	3.02	0	2574
55	3.12	0	2655
60	3.10	0	2638

IEEE 802.11g (One Client)

		Lost	Total
Sending Rate (Mbps)	Throughput (Mbps)	Datagrams	Datagrams
5	5.00	0	4253
10	9.99	0	8505
15	14.40	0	12285
20	20.00	0	17008
25	24.90	0	21213
26	26.00	0	22125
27	26.80	0	22815
28	27.10	0	23005
29	26.90	0	22870
30	26.50	7	22393
35	22.40	0	19078
40	22.20	0	18999
45	23.00	0	19589
50	22.90	0	19477
55	19.70	0	16813
60	20.10	0	17040

IEEE 802.11g (Two Clients)

		Lost	Total
Sending Rate (Mbps)	Throughput (Mbps)	Datagrams	Datagrams
5	4.99	0	4157
10	8.95	0	7624
15	7.74	0	6588
20	8.87	1	7551
25	8.91	0	7589
26	9.25	0	7888
27	9.15	0	7802
28	9.23	0	7859
29	9.45	0	8038
30	8.87	0	7539
35	9.40	0	7991
40	9.58	0	8186
45	9.61	0	8184
50	9.80	0	8349
55	10.30	0	8787
60	8.60	0	7312

IEEE 802.11b & IEEE 802.11g (One Client)

		Lost	Total
Sending Rate (Mbps)	Throughput (Mbps)	Datagrams	Datagrams
5	5.00	0	4253
10	10.00	0	8505
15	15.00	0	12757
20	20.00	0	17008

25	25.00	0	21278
26	25.60	0	21821
27	27.00	0	22955
28	27.70	0	23557
29	26.20	0	22274
30	26.80	0	22784
35	24.00	0	20420
40	22.30	0	18935
45	22.80	0	19416
50	23.70	0	20195
55	19.50	0	16552
60	20.50	0	17470

IEEE 802.11b & IEEE 802.11g (Two Clients)

		Lost	Total
Sending Rate (Mbps)	Throughput (Mbps)	Datagrams	Datagrams
5	4.87	0	4137
10	9.31	0	7919
15	7.81	0	6643
20	9.07	0	7725
25	8.85	0	7537
26	8.69	0	7398
27	18.20	0	15527
28	17.90	0	15329
29	9.05	0	7705
30	9.37	0	7966
35	17.00	0	14379
40	17.90	0	15205
45	9.85	0	8389
50	16.30	0	13867
55	17.90	0	15211
60	10.00	0	8507

Member of Group 3

1. Ms.Pornprapa Chuwongwit ID 5122770241

2. Mr.Krittameth Teachasrisaksakul ID 5122780570

3. Ms.Araya Kinbuangam ID 5122791171