LANs and ARP

Ethernet

Addressing and Frames

ARP

LANs and ARP

Networking

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 5 November 2013 Common/Reports/lans-arp.tex, r723

Networking

Contents

LANs and ARP

Ethernet

Addressing and Frames

ARP

Ethernet LANs

IEEE 802.3 Addressing and Frames

Address Resolution and ARP

LANs and ARP

Ethernet

Addressing and Frames

ARP

Ethernet LANs

- Local Area Networks (LANs) connect end-user devices across homes, factories, office buildings, campuses
- Owned and operated by owner of end-user devices
- Many popular LAN technologies are standardised by IEEE in the 802 series
- ► IEEE 802.3 is most widespread wired LAN technology
- ► Also called Ethernet

Networking

IEEE 802 Protocol Architecture

LANs and ARP

Ethernet

Addressing and Frames

ARP

LANs and ARP

Ethernet

Addressing and Frames

ARP

IEEE 802.3 LANs

Physical Layer

- Original popular Ethernet: 10 Mb/s, bus topology, coaxial cable, CSMA/CD, half-duplex
- Fast Ethernet: 100 Mb/s, star (switched) topology, UTP, no MAC, full-duplex
- Gigabit Ethernet: 1 Gb/s, switched, twisted pair or optical fibre
- ► 10-Gigabit Ethernet: between switches, servers
- ► 40 Gb/s and 100 Gb/s Ethernet is available

Topology

- ► Bus
- ► Ring
- Star: commonly used today—switched Ethernet

Networking

Switched Ethernet Topology

LANs and ARP

Ethernet

Addressing and Frames

ARP

- Stations (hosts, routers) connect via full-duplex twisted pair to switch
- ► Switch has multiple ports, e.g. 4, 8, 24, 48
- All frames between stations pass via the switch

Contents

LANs and ARP

Ethernet

Addressing and Frames

ARP

Ethernet LANs

IEEE 802.3 Addressing and Frames

Address Resolution and ARP

Networking

LANs and ARP

Ethernet

Addressing and Frames

ARP

IEEE 802 Addresses

- ▶ IEEE 802 standards use common IEEE 48-bit address format
- Commonly called MAC or hardware addresses
- Globally unique (ideally)
 - First 24-bits assigned by IEEE to manufacturer http://standards.ieee.org/regauth/oui/
 - Second 24-bits assigned by manufacturer to device
- For simplicity, represented as 6×2 digit hexadecimal numbers, e.g. 90:2b:34:60:dc:2f
- Special case broadcast address: ff:ff:ff:ff:ff:ff
- Common in other standards: Bluetooth, ATM, FDDI, **FibreChannel**
- ► IEEE 64-bit address is alternative format: Firewire, ZigBee, IPv6

IEEE 802.3 Frames

LANs and ARP

Addressing and Frames ARP

Ethernet

6 Bytes	6 Bytes	2 Bytes	46 to 1500 Bytes	4 Bytes
Destination	Source	Ether	Data	CRC
Address	Address	Type		Checksum

- Typical maximum data size is 1500 Bytes (optional Jumbo frames)
- 1st 8 bytes (preamble, delimiter) sometimes considered part of Physical layer

- Hardware (MAC) addresses are assigned to LAN card by manufacturer
- Each station (hosts and routers) have address for each network interface card

10

Example MAC Table used by Switch

LANs and ARP

Ethernet

Addressing and Frames

ARP

- Switch learns address of station at other end point of link
- Store address and port in memory; used for forwarding frames

11

Networking

Example IP Addresses

LANs and ARP

Ethernet

Addressing and Frames

ARP

- Interfaces also have IP addresses; assigned manually or dynamically (DHCP)
- ► All IP addresses in the LAN have same network portion
- ► Example: subnet mask is /24; network address is 192.168.1.0

Contents

LANs and ARP

Ethernet

Addressing and Frames

ARP

Ethernet LANs

IEEE 802.3 Addressing and Frames

Address Resolution and ARP

Networking

LANs and ARP

Ethernet

Addressing and Frames

ARP

Mapping IP to Hardware Address

- IP-based applications (software) communicate to applications on other computers using logical IP addresses
- Stations inside a LAN communicate to other stations using physical hardware addresses
- Assume source application knows destination computer by IP address
- What is the hardware address of destination computer (or device to reach destination computer)?
- Address Resolution Protocol (ARP) maps IP addresses to hardware addresses

LANs and ARP

Ethernet

Addressing and Frames

ARP

Address Resolution Protocol

Motivation

- Source S needs to send data to destination IP_{dst}
- Therefore, S needs to know hardware address of destination, i.e. HW_{dst}

Approach

- 1. S asks all stations on LAN: "Who has address IP_{dst}?"
 - Broadcast ARP request packet
 - Sent on-demand
- Station with address IP_{dst} replies: "I have IP_{dst} (and my hardware address is HW_{dst})"
 - Unicast ARP reply packet
 - ► Cache recent replies in table

Example ARP Request from Station F

Networking

LANs and ARP

Ethernet

Addressing and Frames

ARP

- ► F knows destination IP 192.168.1.1
- ARP Request broadcast to LAN (switch sends to all other ports)

LANs and ARP

Ethernet

Addressing and Frames

ARP

Example ARP Request from Station F

SenderHW=f0:b4:79:ef:01:23 SenderIP=192.168.1.29 TargetHW=00:00:00:00:00:00 TargetIP=192.168.1.1

Src=f0:b4:79:ef:01:23 Dst=ff:ff:ff:ff:ff

- ff:ff:ff:ff:ff:ff:ff (all binary 1's) is special LAN broadcast address
- 00:00:00:00:00 (all binary 0's) is special when address unknown

17

Example ARP Reply to Station F

Networking LANs and ARP

Ethernet

Addressing and Frames

ARP

 Reply sent only by station that "knows" the request IP address

LANs and ARP

Ethernet

Addressing and Frames

ARP

Example ARP Reply to Station F

SenderHW=ec:c8:82:cd:ef:01 SenderIP=192.168.1.1 TargetHW=f0:b4:79:ef:01:23 TargetIP=192.168.1.29

Src=ec:c8:82:cd:ef:01 Dst=f0:b4:79:ef:01:23

- ► F learns hardware address of 192.168.1.1: ec:c8:82:cd:ef:01
- ► F can cache the value to avoid ARP Request/Reply in future
- C may also cache hardware address for F

Example Routing Table of Station F

LANs and ARP

Networking

- Stations also have routing table
- Indicates next IP device to send in order to reach some destination

Example Addressing in LAN

LANs and ARP

Networking

- 1. F: IP datagram with destination 1.1.1.1
- **2.** F: Lookup routing table \rightarrow send to 192.168.1.1
- **3.** F: Lookup ARP table \rightarrow send to ec:c8:82:cd:ef:01
- 4. Switch: Lookup MAC table \rightarrow send on port 3
- **5.** C: Lookup routing table \rightarrow send on next hop (not shown)

Example IP Datagram from Station F

LANs and ARP

Networking

Ethernet

Addressing and Frames

ARP

Src=192.168.1.29 Dst=1.1.1.1

Src=f0:b4:79:ef:01:23 Dst=ec:c8:82:cd:ef:01

- ► F sends the datagram to the router
- Router C will send on next hop (not shown)