
University of South Australia

Veri�cation of the WAP Transaction

Layer using Coloured Petri nets

Steven Donald Gordon

B.Eng. (Hons)

Institute for Telecommunications Research

and Computer Systems Engineering Centre,

School of Electrical and Information Engineering

University of South Australia

A thesis submitted for the degree of

Doctor of Philosphy in Telecommunications

24 November 2001

Contents

1 Introduction 1

1.1 Background . 1

1.2 Research Aims . 2

1.3 Scope . 2

1.4 Structure of the Thesis . 3

2 Mobile Data and WAP 5

2.1 Mobile Data Services . 6

2.1.1 Wireless Networks and Devices 6

2.1.2 Problems with Existing Internet Infrastructure 7

2.1.3 Current and Future Solutions . 8

2.2 Wireless Application Protocol . 10

2.2.1 Background . 10

2.2.2 Architecture . 12

2.2.3 Application Layer . 13

2.2.4 Session Layer . 13

2.2.5 Transaction Layer . 14

2.2.6 Security Layer . 14

2.2.7 Transport Layer . 15

2.3 Wireless Transaction Protocol . 15

3 Protocol Engineering 17

3.1 Layered Communication Architectures 17

3.1.1 Open Systems Interconnection . 18

3.1.2 Service De�nition . 19

3.1.3 Protocol De�nition . 21

3.2 Protocol Engineering Methodology . 22

3.2.1 Protocol Engineering Process . 22

3.2.2 Protocol Engineering Activities 23

3.2.3 Formal Methods . 25

i

3.3 Veri�cation Methodology . 26

4 Coloured Petri Nets 29

4.1 Petri Nets . 29

4.2 Coloured Petri Nets . 30

4.2.1 Example System . 30

4.2.2 Structure of a CPN . 30

4.2.3 Dynamic Behaviour of a CPN . 32

4.3 Analysis Methods . 34

4.3.1 Simulation . 34

4.3.2 State Space Analysis . 35

4.3.3 The Sweep-Line Method . 38

4.3.4 Language Analysis . 39

4.4 Computer Tools . 39

4.4.1 Design/CPN . 40

4.4.2 FSM, LexTools and GraphViz . 42

5 De�nition of the Wireless Transaction Protocol 44

5.1 Structure of the WTP Speci�cation . 44

5.2 Transaction Service . 46

5.2.1 Protocol Overview . 46

5.2.2 Elements for Layer-to-Layer Communication 48

5.2.3 Classes of Operation . 50

5.3 Transaction Protocol . 51

5.3.1 Protocol Features . 51

5.3.2 Structure and Encoding of Protocol Data Units 57

5.3.3 State Tables . 60

6 Transaction Service Speci�cation 65

6.1 Discussion of the Transaction Service . 66

6.1.1 Structure of the TR-Service . 66

6.1.2 Basic Behaviour . 67

6.1.3 Aborted Transactions . 71

6.2 Transaction Service CPN . 75

6.2.1 Scope of the TR-Service CPN . 75

6.2.2 Structure of the TR-Service CPN 76

6.2.3 Declarations . 76

6.2.4 Page Structure . 77

6.2.5 InvokeResult Page . 80

ii

6.2.6 Abort Page . 81

6.3 Transaction Service Analysis . 83

6.3.1 State Space Analysis . 83

6.3.2 Language Analysis . 83

6.4 Summary . 90

7 Transaction Protocol CPN 91

7.1 Structure of the Transaction Protocol . 92

7.2 Scope and Assumptions of the TR-Protocol CPN 93

7.2.1 Scope of the TR-Protocol CPN 93

7.2.2 Modelling Assumptions . 99

7.3 Structure of the TR-Protocol CPN . 105

7.4 Overview Page . 106

7.5 Protocol Entity Pages . 107

7.6 State Table Pages . 112

7.6.1 General Page Structure . 112

7.6.2 I NULL . 117

7.6.3 I RESULT WAIT . 117

7.6.4 I RESULT RESP WAIT . 121

7.6.5 I WAIT TIMEOUT . 123

7.6.6 R LISTEN . 123

7.6.7 R TIDOK WAIT . 125

7.6.8 R INVOKE RESP WAIT . 126

7.6.9 R RESULT WAIT . 127

7.6.10 R RESULT RESP WAIT . 128

7.6.11 I ABORT and R ABORT . 129

7.7 Multiple Primitives Page . 130

8 Transaction Protocol Analysis 131

8.1 Desired Properties of the Transaction Protocol 131

8.2 Analysis Parameters and Recording of Results 134

8.2.1 Parameters of the TR-Protocol CPN 134

8.2.2 State Space and Language Statistics 135

8.2.3 Hardware and Software Setup . 136

8.3 Con�guration of the Transaction Protocol 136

8.3.1 General Approach to the Analysis 136

8.3.2 Parameter Values . 136

8.3.3 State Space and Language Statistics 137

8.4 Ambiguous Ack and Result PDUs . 139

iii

8.4.1 Description and Example of the Error 139

8.4.2 Suggested Changes to the TR-Protocol 143

8.4.3 Changes to the TR-Protocol CPN 147

8.5 Erroneous Re-start of the Transaction . 148

8.5.1 Description and Example of the Error 149

8.5.2 Suggested Changes to the TR-Protocol 149

8.5.3 Changes to the TR-Protocol CPN 155

8.6 Misinterpreted Ack(Tok) PDU . 156

8.6.1 Description and Example of the Error 156

8.6.2 Suggested Changes to the TR-Protocol 158

8.6.3 Changes to the TR-Protocol CPN 159

8.7 Summary . 159

9 Veri�cation of the Revised Transaction Protocol 161

9.1 Selection of Parameter Values . 162

9.2 State Space and Language Analysis . 162

9.2.1 Language Equivalence . 163

9.2.2 Terminal Markings and Deadlocks 164

9.2.3 Livelocks . 165

9.2.4 Dead Transitions . 166

9.2.5 Upper Bounds on Communication Places 166

9.3 Applying the Sweep-Line Method . 168

9.3.1 Progress Measure . 168

9.3.2 Properties Investigated . 170

9.3.3 Results of Sweep-Line Analysis 171

9.4 Impact of Parameters on State Space Size 172

9.4.1 UserAck . 173

9.4.2 RCRRmax . 173

9.4.3 RCRImax . 175

9.5 Summary . 177

10 Conclusions 178

10.1 Contributions of the Dissertation . 178

10.1.1 Service Speci�cation . 178

10.1.2 Protocol Speci�cation . 179

10.1.3 Analysis of the Protocol . 180

10.1.4 Revised Protocol and its Veri�cation 181

10.1.5 Closed Form Solutions for the Size of the State Space 181

10.1.6 Application of the Sweep-Line Method 182

iv

10.2 Future Work . 182

10.2.1 Obtaining Results for Arbitrary Parameter Values 182

10.2.2 Relaxing Restrictions on the Revised TR-Protocol CPN 182

10.2.3 The Sweep-Line Method and Other Analysis Techniques 183

10.2.4 Other Protocol Engineering Activities 183

10.2.5 Maintenance of the Revised TR-Protocol CPN 183

10.2.6 Generalisation to Other Transaction Protocols 184

References 185

A Finite State Automata 201

A.1 Finite State Automata and State Spaces 201

A.2 FSA Minimization and Comparison . 204

B Transaction Protocol State Tables 206

C Transaction Service State Space Reports 211

D Transaction Protocol CPN and Results 214

D.1 TR-Protocol CPN Declarations . 214

D.2 TR-Protocol State Space Results . 217

D.3 TR-Protocol Language Results . 219

D.3.1 Binding Element Map Speci�cation 219

D.3.2 Language Statistics . 221

E Revised Transaction Protocol CPN and Results 223

E.1 Revised TR-Protocol CPN . 223

E.2 Revised TR-Protocol State Space Code 236

E.3 Revised TR-Protocol Language Results 236

E.3.1 Binding Element Map Speci�cation 236

E.3.2 Language Statistics . 238

E.4 Revised TR-Protocol Sweep-Line Analysis 238

E.4.1 Standard ML Code . 238

F Tools for Analysing Multiple Con�gurations 244

F.1 Analysing Multiple State Spaces in Design/CPN 244

F.2 Minimizing the FSA and Collecting Statistics 249

G Evaluation of the Tools and Techniques Used 253

G.1 Coloured Petri Nets and Design/CPN . 253

G.1.1 Limitations and DiÆculties . 253

v

G.1.2 Evaluation of State Space Analysis 255

G.1.3 Evaluation of the Sweep-Line Method 255

G.2 Automata Theory and FSM . 258

G.2.1 Limitations and DiÆculties . 258

G.2.2 Evaluation of the Language Analysis 258

H Publications 260

H.1 Journal Articles . 260

H.2 Conference Papers . 260

H.3 Other Publications . 263

vi

List of Figures

2.1 WAP programming model . 11

2.2 WAP architecture . 12

3.1 Reference Model for Open Systems Interconnection 18

3.2 Layers in a communications architecture 19

3.3 Abstraction of the (N)-service in a communications architecture 19

3.4 Logical and virtual paths used by the (N)-protocol 21

3.5 Steps of the protocol engineering process 22

3.6 Protocol engineering design activities for each layer 24

3.7 Modelling and analysis steps for the Transaction Service 27

3.8 Modelling and analysis steps for the Transaction Protocol 28

4.1 Example CPN of a book borrowing procedure 31

4.2 Second marking of the example CPN in Fig. 4.1 34

4.3 State space of the example CPN in Fig. 4.1 36

4.4 Hierarchy page for the example CPN in Fig. 4.1 40

5.1 Legal service primitive sequence when UserAck is On 53

5.2 Invoke PDU header structure . 59

5.3 Result PDU header structure . 59

5.4 Ack PDU header structure . 59

5.5 Abort PDU header structure . 60

6.1 Block diagram of the TR-Service . 66

6.2 TR-Service TSD (UserAck On): Basic behaviour 68

6.3 TR-Service TSD (UserAck O�): Basic behaviour 69

6.4 TR-Service TSD (UserAck O�): Updated basic behaviour 70

6.5 TR-Service TSD: Four possible abort sequences 72

6.6 TR-Service TSD: Aborts without TR-Resp-User interaction 72

6.7 TR-Service CPN: Hierarchy page . 76

6.8 TR-Service CPN: InvokeResult page . 77

6.9 TR-Service CPN: Abort page . 82

vii

6.10 TR-Service state space (UserAck O�): Terminal markings 84

6.11 TR-Service state space (UserAck On): Terminal markings 85

6.12 TR-Service FSA (UserAck O�) . 88

6.13 TR-Service FSA (UserAck On) . 89

7.1 Block diagram of the TR-Protocol . 92

7.2 Example of PDUs with di�erent TID incarnations overlapping 95

7.3 TR-Protocol TSD: Missing delivery of TR-Abort.ind to TR-Init-User . . 103

7.4 TR-Protocol CPN: Hierarchy page . 106

7.5 TR-Protocol CPN: TR Protocol page . 107

7.6 TR-Protocol CPN: TR Init PE page . 108

7.7 TR-Protocol CPN: TR Resp PE page . 108

7.8 TR-Protocol CPN: I NULL page . 113

7.9 TR-Protocol CPN: I RESULT WAIT page 119

7.10 TR-Protocol CPN: I RESULT RESP WAIT page 122

7.11 TR-Protocol CPN: I WAIT TIMEOUT page 123

7.12 TR-Protocol CPN: R LISTEN page . 124

7.13 TR-Protocol CPN: R TIDOK WAIT page 125

7.14 TR-Protocol CPN: R INVOKE RESP WAIT page 126

7.15 TR-Protocol CPN: R RESULT WAIT page 127

7.16 TR-Protocol CPN: R RESULT RESP WAIT page 128

7.17 TR-Protocol CPN: I ABORT page . 129

7.18 TR-Protocol CPN: R ABORT page . 129

7.19 TR-Protocol CPN: I RW RcvResult Cnf page 130

8.1 Initial marking of the TR-Protocol CPN in Con�guration 1 137

8.2 TR-Protocol Con�g 1 state space: Two TR-Invoke.cnf primitives 139

8.3 TR-Protocol Con�g 1 TSD: Two TR-Invoke.cnf primitives 140

8.4 TR-Protocol TSD: Ambiguous Ack and Result PDUs 142

8.5 TR-Protocol TSD: Correct Ack and Result PDUs 144

8.6 New header structure for Ack PDU including CNF bit 145

8.7 New header structure for Result PDU including CNF bit 145

8.8 TR-Protocol Con�g 1 state space: Two TR-Invoke.ind primitives 150

8.9 TR-Protocol Con�g 1 TSD: Two TR-Invoke.ind primitives 150

8.10 TR-Protocol TSD: Restrict TID veri�cation 154

8.11 TR-Protocol Con�g 1 state space: Misinterpreted Ack(Tok) PDU 157

8.12 TR-Protocol Con�g 1 TSD: Misinterpreted Ack(Tok) PDU 158

D.1 TR-Protocol Standard ML: Results of check on dead markings 219

viii

D.2 TR-Protocol Standard ML: Convert state space to FSA 221

E.1 Revised TR-Protocol CPN: Hierarchy page 224

E.2 Revised TR-Protocol CPN: TR Protocol page 228

E.3 Revised TR-Protocol CPN: TR Init PE page 228

E.4 Revised TR-Protocol CPN: TR Resp PE page 229

E.5 Revised TR-Protocol CPN: I NULL page 229

E.6 Revised TR-Protocol CPN: I RESULT WAIT page 230

E.7 Revised TR-Protocol CPN: I RW RcvResult Cnf page 231

E.8 Revised TR-Protocol CPN: I RESULT RESP WAIT page 231

E.9 Revised TR-Protocol CPN: I WAIT TIMEOUT page 232

E.10 Revised TR-Protocol CPN: R LISTEN page 232

E.11 Revised TR-Protocol CPN: R TIDOK WAIT page 233

E.12 Revised TR-Protocol CPN: R INVOKE RESP WAIT page 233

E.13 Revised TR-Protocol CPN: R RESULT WAIT page 234

E.14 Revised TR-Protocol CPN: R RESULT RESP WAIT page 235

E.15 Revised TR-Protocol CPN: I ABORT page 235

E.16 Revised TR-Protocol CPN: R ABORT page 235

F.1 Revised TR-Protocol CPN: Con�guration setup page 245

G.1 State space analysis: Node calculation rate vs number of nodes 255

G.2 Number of nodes stored in memory using sweep-line analysis 256

G.3 Calculation time using sweep-line analysis 257

G.4 Nodes stored using ordinary state space and sweep-line analysis 258

ix

List of Tables

5.1 Services provided to TR-User . 47

5.2 Parameters for TR-Invoke primitive . 49

5.3 Parameters for TR-Result primitive . 50

5.4 Parameters for TR-Abort primitive . 50

5.5 Legal primitive sequences for the Transaction Service 50

5.6 Test of incoming events . 61

5.7 Variables used by the Transaction Protocol 62

5.8 Signi�cance of TR-PE state names . 63

5.9 TR-Protocol state table: TR-Resp-PE LISTEN 64

6.1 Signi�cance of interface states in the TR-Service CPN 78

6.2 Signi�cance of transitions in the TR-Service CPN 79

6.3 Signi�cance of TR-Service-Provider messages in the TR-Service CPN . . 79

6.4 TR-Service state space: Statistics . 83

6.5 Correspondence of service primitives to numbers in the FSA 87

6.6 TR-Service language: Statistics . 89

7.1 Protocol features modelled or omitted . 96

7.2 State tables that do not specify the receipt of all PDUs 100

7.3 TR-Resp-PE RESULT RESP WAIT state table: TveTok Flag 101

7.4 TR-Init-PE RESULT WAIT state table: Limit RCR 102

7.5 TR-Init-PE RESULT RESP WAIT state table: Deliver TR-Abort.ind . . 103

7.6 TR-Resp-PE INVOKE RESP WAIT state table: Deliver TR-Abort.ind . 103

7.7 TR-Resp-PE INVOKE RESP WAIT state table: Restrict TR-Result.req 104

7.8 TR-Init-PE WAIT TIMEOUT state table: Remove TR-Abort primitives 105

8.1 Desired terminal marking for TR-Protocol CPN (special case) 132

8.2 Desired set of terminal markings for TR-Protocol CPN (general case) . . 132

8.3 Conditions for a dead transition in the TR-Protocol CPN 134

8.4 Speci�cation of hardware and software used for analysis 136

8.5 Parameter values for Con�guration 1 of the TR-Protocol 137

x

8.6 State space statistics of the TR-Protocol CPN in Con�guration 1 137

8.7 FSA and language statistics of the TR-Protocol CPN in Con�guration 1 138

8.8 TR-Init-PE RESULT WAIT state table: Remove PDU ambiguities . . . 145

8.9 TR-Init-PE RESULT RESP WAIT state table: Remove PDU ambiguities 146

8.10 TR-Init-PE WAIT TIMEOUT state table: Remove PDU ambiguities . . 146

8.11 TR-Resp-PE INVOKE RESP WAIT state table: Remove PDU ambiguities 146

8.12 TR-Resp-PE RESULT WAIT state table: Remove PDU ambiguities . . . 147

8.13 TR-Resp-PE RESULT RESP WAIT state table: Remove PDU ambiguities 147

8.14 Conditions 14 & 15 for an expected dead transition 149

8.15 TR-Resp-PE LISTEN state table: Restrict TID veri�cation 151

8.16 TR-Resp-PE TIDOK WAIT state table: Restrict TID veri�cation 151

8.17 TR-Resp-PE INVOKE RESP WAIT state table: Restrict TID veri�cation 152

8.18 TR-Resp-PE RESULT WAIT state table: Restrict TID veri�cation . . . 152

8.19 TR-Resp-PE RESULT RESP WAIT state table: Restrict TID veri�cation 152

8.20 Condition 16 for an expected dead transition 156

8.21 TR-Resp-PE LISTEN state table: Start timer, W 159

8.22 TR-Resp-PE INVOKE RESP WAIT state table: Start timer, W 159

8.23 TR-Resp-PE RESULT WAIT state table: Start timer, W 159

8.24 TR-Resp-PE RESULT RESP WAIT state table: Start timer, W 160

9.1 Revised TR-Protocol results: Language and FSA statistics 163

9.2 Revised TR-Protocol results: State space size & deadlocks 164

9.3 Revised TR-Protocol results: SCC Graph size & bounds 165

9.4 Revised TR-Protocol results: Dead transitions 167

9.5 Example progress measure for Con�guration 1-2-T 169

9.6 Example progress measure for Con�guration 1-2-T including values for

completed transactions . 170

9.7 Revised TR-Protocol results (Sweep-line): Language statistics 171

9.8 Revised TR-Protocol results (Sweep-line): State space statistics 172

9.9 Revised TR-Protocol results (Sweep-line): Dead transitions 172

9.10 Change in number of state space nodes when varying RCRRmax 174

9.11 Constants for Eq. 9.4 when varying UserAck and RCRImax 174

9.12 Change in number of state space nodes for RCRRmax=0 and UserAck=T 176

B.1 TR-Protocol state table: TR-Init-PE NULL 206

B.2 TR-Protocol state table: TR-Init-PE RESULT WAIT 207

B.3 TR-Protocol state table: TR-Init-PE RESULT RESP WAIT 207

B.4 TR-Protocol state table: TR-Init-PE WAIT TIMEOUT 208

B.5 TR-Protocol state table: TR-Resp-PE LISTEN 208

xi

B.6 TR-Protocol state table: TR-Resp-PE TIDOK WAIT 208

B.7 TR-Protocol state table: TR-Resp-PE INVOKE RESP WAIT 209

B.8 TR-Protocol state table: TR-Resp-PE RESULT WAIT 209

B.9 TR-Protocol state table: TR-Resp-PE RESULT RESP WAIT 210

B.10 TR-Protocol state table: TR-Resp-PE WAIT TIMEOUT 210

E.1 Revised TR-Protocol results: Language and FSA statistics 239

xii

Listings

6.1 TR-Service CPN: Declarations . 76

6.2 TR-Service CPN: Mapping function . 86

7.1 TR-Protocol CPN: Basic colour set declarations 109

7.2 TR-Protocol CPN: PDU declarations . 109

7.3 TR-Protocol CPN: TR-PE state declarations 110

7.4 TR-Protocol CPN: Selected function declarations 114

7.5 TR-Protocol CPN: Constant declarations 120

9.1 Revised TR-Protocol state space: Design/CPN report for Con�g 2-8-F . 175

A.1 Standard ML: Convert Design/CPN state space to FSM text format . . . 202

A.2 Shell script: Minimize a Revised TR-Protocol con�guration using FSM . 203

C.1 TR-Service state space (UserAck On): Design/CPN Report 211

C.2 TR-Service state space (UserAck O�): Design/CPN Report 212

D.1 TR-Protocol CPN: Declarations . 214

D.2 TR-Protocol state space: Design/CPN report 217

D.3 TR-Protocol Standard ML: Check dead markings 218

D.4 TR-Protocol Standard ML: Arc mapping function 219

D.5 TR-Protocol Standard ML: Halt mapping function 221

D.6 TR-Protocol language: Statistics from scripts 222

E.1 Revised TR-Protocol CPN: Declarations 224

E.2 Revised TR-Protocol Standard ML: Check dead markings 236

E.3 TR-Protocol Standard ML: Arc mapping function 236

E.4 TR-Protocol Standard ML: Halt mapping function 238

E.5 Revised TR-Protocol Standard ML: Progress measure 238

E.6 Revised TR-Protocol Standard ML: Setup sweep-line analysis 241

F.1 Revised TR-Protocol CPN: Changes to declarations for con�gurations . . 245

F.2 Standard ML: Setup Design/CPN to analyse multiple con�gurations . . . 246

F.3 Standard ML: Analyse multiple con�gurations 248

F.4 Standard ML: Analyse multiple con�gurations using sweep-line method . 249

F.5 Shell script: Copy saved �les to subdirectories 250

F.6 Shell script: Minimize all con�gurations 250

xiii

F.7 Shell script: Collect FSM statistics . 251

F.8 Shell script: Test for di�erences between TR-Protocol and TR-Service . . 251

F.9 Awk scripts: Number of sequences, maximum and minimum lengths . . . 252

xiv

Acronyms and Abbreviations

AEC Acknowledgment Expiration Counter

AMPS Advanced Mobile Phone Service

ANSI American National Standards Institute

ATM Asynchronous Transfer Mode

BE Binding Element

BNF Backus Naur Form

CDMA Code Division Multiple Access

CDPD Cellular Digital Packet Data

CFFP Chaos-Free Failures Divergence

cHTML Compact HTML

CLNP Connection-less Network Protocol

CNF Con�rmed

cnf con�rm

CON Continue

CPN Coloured Petri Net

CSD Circuit Switched Data

DECT Digital Enhanced Cordless Telecommunications

DES Data Encryption Standard

DFSA Deterministic FSA

DL Deadlock

ECDH Elliptic Curve DiÆe-Hellman

ETSI European Telecommunications Standards Institute

FDDI Fibre Distributed Data Interconnect

FIFO First-In First-Out

FSA Finite State Automata

GPRS General Packet Radio Service

GSM Global System for Mobile Communication

GTR Group Trailer

GUTS General UDP Transport Service

HTML Hypertext Markup Language

xv

HTTP Hypertext Transfer Protocol

I2R Upper integer bound of InitToResp

ind indication

IOTP Internet Open Trading Protocol

IP Internet Protocol

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

ITU International Telecommunications Union

ITU-T ITU Telecommunications Standardization Sector

IWS Integrated Weapons Simulator

LAN Local Area Network

LL Livelock

ML Meta Language

MPL Maximum Packet Lifetime

MSISDN Mobile Station/Subscriber ISDN Number

NIP Not In TR-Protocol language

NIS Not In TR-Service language

OSI Open Systems Interconnection

PDA Personal Digital Assistant

PDC Personal Digital Cellular

PDU Protocol Data Unit

PHS Personal Handyphone System

PN Petri Net

PSN Packet Sequence Number

R2I Upper integer bound of RespToInit

RCR Re-transmission Counter

res response

RES Reserved

RID Re-transmission Indicator

req request

RSA Rivest, Shamir, and Adleman public-key cryptosystem

SAP Service Access Point

SAR Segmentation and Re-assembly

SCC Strongly Connected Component

SDU Service Data Unit

SGSN Serving GPRS Support Node

SIP Session Initiation Protocol

SMS Short Message Service

xvi

TCL Transaction Class

TCP Transmission Control Protocol

TETRA Terrestrial Trunked Radio Access

TID Transaction Identi�er

TIDok Transaction Okay

TIDve Transaction Verify

TM Terminal Marking

Tok Transaction Okay

TPI Transport Information Items

TR Transaction

TSD Time Sequence Diagram

T/TCP Transaction/TCP

TTR Transmission Trailer

Tve Transaction Verify

UDP User Datagram Protocol

UserAck User Acknowledgment

USSD Unstructured Supplementary Services Data

WAE Wireless Application Environment

WAN Wide Area Network

WAP Wireless Application Protocol

WDP Wireless Datagram Protocol

WML Wireless Markup Language

WSP Wireless Session Protocol

WTA Wireless Telephony Application

WTLS Wireless Transport Layer Security

WTP Wireless Transaction Protocol

WWW World Wide Web

XTP Xpress Transport Protocol

xvii

Summary

The rapid growth of the Internet and its use has inevitably led to its entrance into the

wireless world. However, the characteristics of wireless networks and the devices typically

used in them, result in a signi�cantly di�erent operating environment than that provided

by the existing Internet infrastructure. A range of protocols and architectures, of which

the Wireless Application Protocol (WAP) is one, have been proposed to overcome the

diÆculties of providing Internet services in wireless networks. The Transaction layer in

WAP de�nes a protocol to support transactions where an Initiator makes a request to

a Responder, which returns the requested information. This thesis applies a protocol

engineering methodology to analyse the functional behaviour of the Transaction layer in

WAP. Coloured Petri net (CPN) models of the Class 2 Transaction layer service (TR-

Service) and protocol (TR-Protocol) are created based on an existing speci�cation. The

aim is to verify that the TR-Protocol is a faithful re�nement of the TR-Service, in terms

of sequences of primitives seen by the users.

The WAP Transaction layer speci�cation de�nes the TR-Service using narrative de-

scriptions and a table specifying the possible primitives that may follow one another, as

seen by a user. The CPN modelling and analysis process has revealed the existing speci-

�cation is ambiguous and incomplete. A set of rules is de�ned to remove the ambiguities.

These rules, and the existing speci�cation, are formalised in the TR-Service CPN. State

space generation and automata reduction are used to produce the TR-Service language,

the set of possible global sequences of primitives, as opposed to the local sequences only

available in the WAP speci�cation.

The WAP Transaction layer speci�cation also describes the TR-Protocol. The dy-

namic behaviour of the TR-Protocol is described mainly using state tables. These state

tables are formalised by the creation of the TR-Protocol CPN. Without loss of generality,

only a single transaction between one Initiator and one Responder is modelled. As the

initial focus is on the core operation of the TR-Protocol, the version handling and seg-

mentation and re-assembly features are omitted from the model. The underlying service

(the Transport layer in WAP) is assumed to be error free (no corruption, loss or dupli-

cation), but allows overtaking of protocol data units (PDUs). A set of assumptions are

also made that remove certain errors from the WAP speci�cation. As a result, suggested

xviii

changes to the speci�cation have been input to the WAP Forum, and the majority of

them have been accepted.

State space and language analysis are used to investigate the following four properties

of the TR-Protocol: re�nement of the TR-Service, in terms of sequences of primitives;

successful termination (which includes absence of deadlocks); absence of livelocks; and

absence of redundant state table entries (dead transitions in the CPN). The analysis

reveals the following errors in the existing speci�cation: ambiguous semantics of two

PDUs; the possibility of a re-transmitted Invoke PDU starting a new transaction from

the Responder's point of view; and the possibility of the Responder misinterpreting a re-

transmitted Ack PDU. A set of changes are proposed, leading to a Revised TR-Protocol.

Further analysis proves the four desired properties hold for the Revised TR-Protocol for

all permutations of the parameters of the CPN (i.e. a toggle of the user acknowledgment

feature, and the maximum values of the re-transmission counters at both Initiator and

Responder) when the counters are less than 5. This includes the suggested con�guration

to be used in several GSM (Global System for Mobile communication) networks.

Finally, from the results obtained from the set of parameter values analysed, observa-

tions are made on the relationship between the counters used in the TR-Protocol CPN

and the state space size. These relationships may be used in the future to prove proper-

ties independently of the particular parameter values, signi�cantly increasing the power

of analysis.

xix

Declaration

I declare that this thesis does not incorporate without acknowledgment any material

previously submitted for a degree or diploma in any university; and that to the best

of my knowledge it does not contain any material previously published or written by

another person except where due reference is made in the text.

Steven Donald Gordon

xx

Acknowledgments

My supervisor, Professor Jonathan Billington, provided suggestions for directions of my

research, and has continued throughout my candidature to be a source of technical ex-

pertise. He has also provided substantial feedback on the writing of this thesis, for which

he is gratefully acknowledged. Finally, I would like to thank Professor Billington for his

advice and support for all other matters related to undertaking postgraduate study, such

as funding and employment opportunities.

Participation in the Computer Systems Engineering Centre (CSEC) and the TNS

Group of the Institute for Telecommunications Research (ITR) has been of enormous

bene�t, both for my research and in advancing my general knowledge and communication

skills. I would like to thank all the members for this. Several people deserve a special

mention: Maria Villapol for the thought provoking discussions over the 3 years; Lars

Kristensen for the assistance with Design/CPN and analysis techniques; and Lin Liu,

Chun Ouyang, Bing Han and Lars for reviewing a draft of this thesis.

The �nancial support from the following organisations has been vital for the success-

ful completion of my research: the Australia Government for an Australian Postgraduate

Award; the Cooperative Research Centre for Satellite Systems for the DSpace Schol-

arship; and the School of Electrical and Information Engineering, ITR and CSEC for

funding to attend conferences and general support.

I am indebted to my family and friends for their support during my candidature. In

particular, I am grateful to my parents for giving me the opportunity to undertake my

undergraduate and postgraduate studies. Finally, thanks go to Sarah Williams for her

continuing love and understanding, especially during the diÆcult phases of writing this

thesis.

WAP Forum is a trademark of the Wireless Application Protocol Forum, Ltd. Fig-

ures 2.1, 2.2 and 5.1{5.5 and Tables 5.1{5.7, 5.9 and B.1{B.10 in this thesis are based

on �gures and tables in WAP Forum Speci�cations, which are copyright of the Wireless

Application Protocol Forum, Ltd. Terms and conditions of use are available from the

WAP Forum Web site (http://www.wapforum.org/what/copyright.htm).

xxi

Chapter 1

Introduction

1.1 Background

The Internet [34] has spread into our everyday lives via the proliferation of desktop

computers and software for distributed applications, such as World Wide Web (WWW)

[12] browsers. At the same time, mobile telephony has allowed people to contact the rest

of the world from almost anywhere and at anytime. Providing data services o�ered on

the Internet to mobile users, often referred to as mobile data [146], is an obvious step

forward. However, moving Internet services to a mobile medium is not straightforward,

due to two main reasons.

The existing Internet infrastructure has been designed for �xed users communicating

via a wired network. Mobile users communicate via a wireless network, which exhibits

many di�erent characteristics from a wired network. These include: relatively lower

bandwidth, higher probability of data loss and greater transmission delays. These charac-

teristics detrimentally a�ect (sometimes severely) the performance of Internet protocols.

The second diÆculty for mobile data services is adapting existing Internet applications

written for desktop computers, to applications suitable for mobile devices (e.g. mobile

telephones have a signi�cantly smaller screen size and a numeric keypad as an input

device).

As a result of these problems, a range of communication protocols and architectures

have been proposed [37, 190, 21] and/or implemented [171, 143, 144, 123, 124, 24] for

mobile data services. The Wireless Application Protocol (WAP) [171] is one architec-

ture proposed by an industry consortium, called the WAP Forum [170], that has been

taken up by many mobile phone manufacturers. It has therefore been exposed to a wide

consumer market. WAP includes several protocols and an application environment, each

optimized towards operating in a wireless environment. The Transaction layer [183] in

WAP de�nes a protocol for performing short request/response transactions between two

entities. This Transaction Protocol is an integral component of browsing-type applica-

1

tions, where mobile users request information from a server which returns a response.

The Transaction layer speci�cation is publicly available [183], and comprises a de�nition

of the service it o�ers to the upper layers (Transaction Service) and the mechanisms for

providing the service (Transaction Protocol).

Although performance is an important issue in the design of the WAP architecture, it

is also necessary to ensure the communication protocols are unambiguous, complete and

functionally correct. One approach to ensuring the correctness of the Transaction layer

design is to create formal models of the Transaction Service and Transaction Protocol,

and then compare the two to determine if indeed the protocol provides the de�ned service.

Coloured Petri nets (CPNs) [86] are a suitable modelling language for this veri�cation

task, as they can conveniently express non-determinism, concurrency and di�erent levels

of abstraction that are inherent in communication protocols. They are also supported by

the computer tool Design/CPN [109].

1.2 Research Aims

The overall aim of this thesis is to verify the design of the Transaction layer in the WAP

architecture. Three objectives must be reached in order to achieve this aim.

The veri�cation involves comparing the Transaction Protocol to the Transaction Ser-

vice. The �rst objective, therefore, is to provide a complete and unambiguous de�nition

of the Transaction Service. A CPN forms the major part of this de�nition.

The second objective is to develop a CPN model of the Transaction Protocol that is

consistent with the speci�cation [183], but also optimized for veri�cation purposes.

The third objective is to show that the Transaction Protocol satis�es a set of prop-

erties, including that it is a faithful re�nement of the Transaction Service, for a set of

initial con�gurations, that depend on protocol parameters.

1.3 Scope

The research undertaken for this thesis has involved investigating the applicability of

Coloured Petri nets for the analysis of distributed systems. More speci�cally, Coloured

Petri nets were applied to two case studies with the objective of verifying that the system

at one level of abstraction (e.g. protocol/design speci�cation) faithfully re�ned the system

at a higher level of abstraction (e.g. service/requirements speci�cation). The two case

studies were the WAP Transaction layer and a distributed missile simulator, called the

Integrated Weapons Simulator (IWS) [33]. To meet practical limits on the size of this

thesis the IWS case study has been omitted. Several results from the analysis of IWS are

reported in [51, 52, 53, 58]. Appendix H also includes summaries of these publications.

2

The focus of this thesis is the veri�cation of the WAP Transaction layer. Therefore, the

CPN model of the Transaction Protocol is optimized towards the veri�cation procedure.

A considerable amount of e�ort was spent on developing a Transaction Protocol CPN

that was purely for speci�cation purposes [57]. This CPN is not included. Chapter 3

discusses the di�erences between speci�cation and veri�cation oriented models.

1.4 Structure of the Thesis

The remainder of this thesis consists of the following chapters.

Chapter 2 provides motivation for investigating mobile data services and, more specif-

ically, the WAP Transaction layer. The problems with adapting the existing Internet

infrastructure to a mobile environment are presented, and a selection of proposed and/or

implemented solutions summarized. Of these solutions, a more detailed treatment is given

to the WAP architecture. A survey of work related to the analysis of the Transaction

layer is also presented.

Chapter 3 describes a general protocol engineering methodology, which includes sev-

eral key concepts that arose from the development of the Reference Model for Open

Systems Interconnection (OSI) [80]. The tailoring of the methodology to the Transaction

layer is also described.

Chapter 4 introduces Coloured Petri nets, the formal technique that is used to model

the Transaction Service and Protocol. The analysis techniques used, state space, lan-

guage/automata and sweep-line, are also described.

Chapter 5 summarizes the speci�cation of the Transaction layer given in [183]. This

chapter is meant to accurately reect what is given in [183], with no attempt to justify the

design decisions. In the following chapters, de�ciencies in the speci�cation are revealed

and discussed.

Chapter 6 discusses where the Transaction Service in [183] is ambiguous or incom-

plete, and provides a set of modi�cations for improving the Transaction Service. A CPN

model of the Transaction Service is created and used to generate the Transaction Service

language, which de�nes the set of possible global sequences of service primitives. This

chapter re�nes the Transaction Service CPN given in [54].

Chapter 7 gives a detailed description of the Transaction Protocol CPN. This includes

discussion of a set of restrictions, simpli�cations and assumptions made to tailor the CPN

for veri�cation, while still accurately representing the Transaction Protocol [183]. An

earlier model of the Transaction Protocol was published in [56].

Chapter 8 analyzes the CPN from Chapter 7, revealing errors in the Transaction

Protocol given in [183]. Changes to the Transaction Protocol are suggested, leading to a

Revised Transaction Protocol.

3

Chapter 9 presents the state space and language analysis results of a set of initial

con�gurations of the Revised Transaction Protocol CPN. The language analysis compares

the Revised Transaction Protocol and Transaction Service languages, showing that the

protocol does provide the service. The results, in addition with sweep-line analysis results,

are used to conjecture about the dependence of the state space size on the Transaction

Protocol parameters.

Chapter 10 concludes this thesis with a summary of the contributions of the research

and a list of areas for future work.

Appendix A describes the practical steps in obtaining a service primitive language

from a CPN model.

Appendix B gives the state tables from the WTP Speci�cation [183] in full, so that

the CPN in Chapter 7 can be validated.

Appendix C lists a summary of statistics obtained from analysing the Transaction

Service CPN of Chapter 6.

Appendix D contains supporting material, including analysis results, for the Trans-

action Protocol CPN of Chapter 7.

Appendix E gives the CPN model of the Revised Transaction Protocol in full, and

presents the results for all con�gurations analysed.

Appendix F lists the modi�cations to the Revised Transaction Protocol CPN that

enable the eÆcient calculation of results for all con�gurations.

Appendix G discusses the applicability of the tools and techniques to the veri�cation

task, as a guide for other potential and existing users.

Appendix H lists the publications, with abstracts, resulting from the research under-

taken during the candidature.

4

Chapter 2

Mobile Data and WAP

The rapid growth of the Internet and its use has inevitably led to its entrance into

the wireless world. Users are (or will be) no longer content with desktop access to the

wealth of information provided by computer networks such as the Internet|many desire

connectivity while mobile. Some typical mobile data applications include:

� sales people retrieving customer information as they make visits;

� locating nearby services such as restaurants and petrol stations;

� performing secure transactions with your bank; and

� receiving updates of important news or stock prices.

These and other applications represent a large market place. This is illustrated by

the use of existing mobile data services:

� i-mode [123], a proprietary mobile Internet service in Japan, had 18 million users

(15% of the population) in February 2001 [44].

� 50 billion Short Message Service (SMS) text messages were sent on GSM (Global

System for Mobile communications [116]) networks worldwide in the �rst three

months of 2001 [63].

This chapter examines the need for new mobile data services, in particular the Wireless

Application Protocol (WAP), and why the existing Internet infrastructure is inadequate.

Section 2.1 describes the characteristics of the wireless networks and devices used for

mobile data, and the problems they present for the Internet protocol suite. Several

prominent mobile data services are also described. Section 2.2 introduces WAP and the

Wireless Transaction Protocol (WTP) which we investigate in this thesis. Section 2.3

concludes this chapter with a discussion of our motivation for analysing WTP, including

a survey of other research into WTP and similar protocols.

5

2.1 Mobile Data Services

Mobile data services di�er from existing Internet services because users communicate

with small, often hand-held, devices across wireless networks. Section 2.1.1 lists the

characteristics of wireless networks and devices, and Section 2.1.2 describes their impact

on the suitability of mobile data services using the existing Internet infrastructure. Sec-

tion 2.1.3 gives some general solutions and surveys several mobile data services already

in use.

2.1.1 Wireless Networks and Devices

The Internet protocols were designed as a method for communicating across di�erent

physical networks. These include: Wide Area Networks (WANs) (e.g. Asynchronous

Transfer Model (ATM)), Local Area Networks (LANs) (e.g. Ethernet, Fibre Distributed

Data Interconnect (FDDI)) and point-to-point connections (such as dial-up over a tele-

phone line). The common assumption that the Internet protocols make about the links

in the physical networks is that they are error free. This, and other design assumptions

of the Internet protocols, do not hold for wireless networks. The following is a list of

characteristics that di�erentiate wireless networks from their �xed counterparts:

High error rates: Error rates are typically higher in wireless links because of

the power loss in transmission and interference (e.g. signals received from multiple

paths, rain attenuation).

Low bandwidth: The bandwidth available (link capacity) is lower when com-

pared with wired communications (due to regulations on frequency assignment and

tradeo�s with terminal power and error rates). For example, GSM mobile phones

can transmit/receive data at a maximum rate of 9.6 kb/s, whereas dial-up Internet

connections over a phone line are now mainly 56 kb/s. Although wireless band-

width is increasing, this resource will remain a limiting factor in comparison with

wired connections.

Disconnections: Due to variability of signal strength, there may be times when

the wireless device is not connected to the network.

Hand-over: When devices are mobile they may have to move through di�erent

cells in a mobile communication network. Each cell has one base station, with which

devices communicate. As a device moves from one cell to another, a hand-over of

base stations occurs, which should be transparent to the user.

6

In addition to the network characteristics, the types of devices used in a wireless

environment are signi�cantly di�erent from those in �xed networks (i.e. PCs, worksta-

tions). They may include mobile phones, personal digital assistants (PDAs), and laptop

or palm-top computers. We can typically classify wireless devices as having:

� Short battery life (e.g. usage times of minutes to several hours, standby times of

days)

� Small memory

� Less CPU power

� Di�erent input devices (e.g. numeric keypad, stylus)

� Small displays (e.g. several lines, with or without colour/graphics)

The characteristics of wireless devices will tend to limit the types of applications that

are developed for mobile data services.

2.1.2 Problems with Existing Internet Infrastructure

The network and device characteristics listed in the preceding section impose limitations

on the use of existing Internet protocols and applications [126, 1, 7]. Here we summarize

just a few of the problems.

� Transmission Control Protocol (TCP) [133], the reliable transport protocol used

in the Internet, assumes that packets lost in the network are due to congestion

(a fair assumption in wired networks). Therefore, when errors occur TCP invokes

its congestion control mechanism. This e�ectively reduces the transmission rate.

Errors in a wireless link, however, are likely to be due to transmission errors, rather

than congestion. When this is the case, reducing the transmission rate will reduce

the overall throughput.

� TCP uses a three-way handshake to synchronize the two parties of a connection.

For applications making frequent, small connections, this can be a signi�cant and

unnecessary overhead in wireless networks. Overheads should be kept to a minimum

in wireless networks so the amount of information transferred is reduced.

� TCP and the Internet Protocol (IP) [132] were not designed to handle hand-overs

and disconnections. A transport protocol aware of these phenomena may be able

to detect, for example, a hand-over and stop transmitting until it is complete.

7

� The Internet addressing scheme, using IP, allocates addresses to each host, based

on the network it is in. Packets are sent to the network and then forwarded to the

host. When a mobile host leaves the network, IP has no standard way of forwarding

packets to the host in its new (de-facto) network.

� The HyperText Markup Language (HTML) [189] has a large set of tags for de-

scribing Web page content. Mobile devices will require a signi�cant amount of

processing power and memory to interpret all of these tags, even when many will

not be used for mobile data services.

2.1.3 Current and Future Solutions

There are several systems in use that provide mobile data services, either independently

of the Internet protocol suite or using part of the Internet infrastructure enhanced for

wireless access. The former approach has the disadvantage that the existing Internet

resources cannot be utilized. There are a range of techniques for the latter, including:

� Increase TCP eÆciency when transmission errors occur by either notifying TCP of

the types of errors (e.g. [37]) or hiding the errors from TCP end-points (e.g. [21]).

(Surveys of these techniques can be found in [8, 1].)

� Add mobility support to IP so that mobile hosts can be reached while outside their

normal (home) networks (e.g. [125, 25, 26]).

� Apply compression techniques and remove redundant information from headers for

transmission over the wireless link (e.g. [40]).

� De�ne new languages for the display of content on wireless devices (e.g. [180, 190,

93, 95]).

The majority of the systems that already provide mobile data services have low data

rates and only specify the functionality of the physical, data link and network layers (or

equivalent) in the protocol stack (see [145] for a survey of several services). These include:

MOBITEX: A packet data technology with a data rate of up to 8 kb/s [143, 94].

MOBITEX uses a proprietary network layer protocol (called MPAK) on top of ex-

isting data link and physical layer protocols. A transport protocol, MTP/1, is also

de�ned, but applications may bypass this protocol and directly use MPAK. Typi-

cal applications of MOBITEX networks include [160, 153]: monitoring of vending

machines, alarms and personnel movements; transmission of �nancial information,

such as credit card authorizations; and messaging for �eld sales or emergency situ-

ations.

8

CDPD: (Cellular Digital Packet Data) [144] A cellular based, packet switching

overlay network of the Advanced Mobile Phone Service (AMPS) in the United

States. IP [132] or the OSI connection-less network protocol (CLNP) [83] can be

used at the networking layer to provide data rates up to 19.2 kb/s. CDPD networks

have similar applications to MOBITEX.

SMS: (Short Message Service) [124] A messaging service that utilizes the GSM

control channel (allowing messages to be transmitted while the voice channel is

being used). Messages, which can contain up to 160 characters, can be broadcast

to all users in a cell or delivered point-to-point between users. Although the per-

formance of SMS is relatively low (delivery times may be in the order of 10's of

seconds or longer), it is extremely popular due mainly to its ease of use and the

penetration of GSM phones [63]. Personal communications, content delivery and

subscription applications are also common (e.g. delivery of news bulletins).

GPRS: (General Packet Radio Service) [24] A packet switched bearer service of

GSM which is destined to take-over from SMS. It provides data rates up to 170

kb/s that is shared based on user demand. GPRS packets from a mobile ter-

minal are switched through a (serving) GPRS support node (SGSN), which can

utilize existing network protocols such as IP and CLNP for further transmission.

Although few applications utilize GPRS directly (unlike SMS, which applications

use directly), other architectures, as we will see shortly for WAP, use GPRS as a

network technology.

Two systems that attempt to do more than just enhancing the network layers and

layers below are i-mode [123] and WAP [171]. These systems specify enhancements to the

transport protocols and the mechanisms for developing mobile data applications. The

following brief descriptions of each conclude this section.

i-mode

i-mode [123, 121] (meaning information mode) is a mobile data service created and pro-

vided by NTT DoCoMo [123], Japan's leading mobile phone operator. Users can access

Internet content via their i-mode mobile phones, which are widely available in Japan. In

practice, most of the content is restricted to that developed speci�cally for i-mode using

a subset of HTML, called Compact HTML (cHTML) [93]. cHTML allows developers

to take advantage of existing HTML applications, but restricts the use of memory and

data intensive tags (e.g. frames, tables and image maps cannot be used). There are also

limitations on the size of cHTML pages and images.

i-mode uses a packet based overlay of Personal Digital Cellular (PDC) [117], Japan's

mobile phone network technology [121]. From the mobile phone to a gateway on the edge

9

of the mobile phone network and the Internet, a transport protocol called TL, which is

standardized by the Association of Radio Industries and Businesses [3], is used. TCP

[133] is used from the gateway to web servers on the Internet. Content on a web server

is transferred to the mobile phone using the HyperText Transfer Protocol (HTTP) [48].

The maximum data rate o�ered to users is 9.6 kb/s.

NTT DoCoMo launched i-mode in February 1999. Two years later there were 18 mil-

lion users in Japan, which comprises 15% of the population [44]. The types of applications

speci�cally designed for i-mode include: bank transactions, telephone and restaurant di-

rectories, airline and entertainment reservations, email, news updates, games, karaoke

and character downloads. The introduction of a Java [59] programming environment for

i-mode handsets will allow further, more interactive applications to be created [112].

WAP

WAP [171] is an architecture that attempts to alleviate the problems of wireless Inter-

net access at di�erent levels of the protocol architecture, from transport layer up to

the application layer. WAP applications are tailored towards mobile phones and other

hand-held devices. Like i-mode, WAP uses a markup language and transport protocols

optimized for the link between the mobile terminal and a WAP gateway situated in the

�xed network. The existing Internet infrastructure can be used from the �xed network to

the WAP gateway. Although the design principles and targeted applications are similar,

di�erent protocols are used in i-mode and WAP. Another major di�erence is that WAP

is more open than i-mode, in that speci�cations are developed by an industry consortium

[170] and made publicly available. WAP has been designed to be a global standard,

operating over GSM, CDMA (Code Division Multiple Access) and even PDC mobile

phone networks, whereas i-mode is mainly a proprietary Japanese solution1. Because of

its world-wide applicability, and use in Australia, we have chosen to begin further inves-

tigations into WAP. The following section provides more details on the motivation and

design of WAP.

2.2 Wireless Application Protocol

2.2.1 Background

The WAP architecture2 [171] was designed by the WAP Forum [170] to provide Internet

and similar services to mobile users. The initial focus was on the delivery of services

1This may, however, change with proposed introductions of i-mode into Europe [155] and the United
States [75].

2Although named \Wireless Application Protocol", WAP is actually an architecture that comprises
protocols and applications.

10

over existing wireless networks, particularly GSM mobile phone networks. The types of

applications include:

Location-based: traÆc reporting, �nding events or restaurants.

Financial: stock quotes, banking.

Travel: airline or public transport schedules, hotel bookings.

Enterprise: email, database, information updates.

Commerce: price comparisons, impulse buying.

Informational: news, weather, sports.

The objectives of the design are to take advantage of the existing knowledge and

infrastructure in developing Web applications, while using protocols optimized to run

over wireless links. The former is achieved by using a programming model similar to that

used in the WWW [12]. Figure 2.1, based on Figure 2 in [171], is a good indication of

this.

Client Gateway Server

Encoded Request Request

ReplyEncoded Reply

Encoding/
WAP

Browser

Conversion
Protocol

Decoding

Content

Scripts

WAP Protocols Internet Protocols

Figure 2.1: WAP programming model

The programming model comprises a client, a gateway and a server. A typical ap-

plication on the client might submit a request to a server for information. In the Web

programming model the request goes directly to the server, which responds to the client

with some content. In the WAP programming model the request and response go via

a gateway. The gateway is the interface between the wireless Internet and the wired

Internet. It may perform encoding/decoding and protocol conversion so that the request

and response can be eÆciently sent over the wireless link. The scenario in Figure 2.1

shows the WAP protocols operating between the client and gateway, and the standard

Internet protocol suite between the gateway and server.

The WAP Forum was founded by Ericsson, Motorola, Nokia, and Unwired Planet

(which became Phone.com, and is now Openwave Systems) and released the �rst pub-

lic copy of the WAP speci�cations in April 1998. Since then more than 500 organiza-

tions have joined the consortium. They include: device manufacturers, wireless service

11

providers, software companies, infrastructure providers and content providers. To partic-

ipate in WAP Forum meetings and have access to the design documents, a membership

fee is required. The �nal speci�cations are available publicly (via www.wapforum.org),

and non-members can submit input documents to the WAP Forum with comments or

corrections. The remainder of this section will provide further details on the WAP archi-

tecture. Throughout the thesis, unless otherwise stated, we refer to an updated version

of WAP 1.2, called the June 2000 Conformance Release [171]. Recently, a new version

of WAP has been released, Version 2.0 [186]. Chapter 10 discusses the impact of this

release on the contributions of this thesis.

2.2.2 Architecture

To provide a scalable and extensible architecture, WAP is designed in layers as shown

(shaded grey) in Figure 2.2. There is an application layer and four protocol layers:

session, transaction, security and transport. The relationship with the OSI layers [80],

which are discussed further in Chapter 3, is shown to the left of the architecture. The

layers below the transport layer are not part of WAP.

Physical

Presentation
Application

Session

Transport

Network
Data Link

Other Services and
Applications

Bearers:
GSM IS-136 CDMA PHS CDPD PDC-P iDEN Etc.

Application Layer (WAE)

Session Layer (WSP)

Transaction Layer (WTP)

Security Layer (WTLS)

Transport Layer (WDP)

Figure 2.2: WAP architecture

The WAP layers are designed so that other applications and services can also use

them. For example, a user application may be written directly on top of the Transport

layer. Alternatively, it could use the reliability and integrity provided by the Transaction

and Security layers as well.

Below the WAP stack are the wireless bearer services. As WAP has been designed to

be a global standard for mobile data services, it must support di�erent bearer services.

The bearer services are discussed further in Section 2.2.7.

12

2.2.3 Application Layer

The application layer is called the Wireless Application Environment (WAE) [178]. It

provides a suite of mechanisms and protocols for developing and running WAP applica-

tions. These include:

� Wireless Markup Language (WML) [180]: a mark-up language for describing the

structure and layout of content. This is analogous to HTML [189] in the WWW.

WML content is encoded in a binary tokenized form for transmission over the

wireless link. This, and the cut-down but specialized tag set, can improve the

eÆciency of transmitting to, and displaying on, small wireless devices.

� WMLScript [185]: a scripting language for creating advanced behaviour on the

user interface. This is similar to JavaScript [49] in the WWW. WMLScript al-

lows functionality to be implemented on the wireless device, bypassing expensive

transmissions to the server.

� Wireless Telephony Applications (WTA) [182]: a framework for making use of

the telephony features in the device and network infrastructure. This includes

WML and WMLScript interfaces to telephony functions (e.g. dialling numbers in

the phonebook), mechanisms for the WAP client detecting telephony events and

procedures for ensuring the secure access of the telephony infrastructure.

� User Agent Pro�les [175]: mechanisms for describing the features and pro�les of

the client device (e.g. screen size, colour capabilities), the user (e.g. the browser

supported) and the network (e.g. latency, reliability). The information can be used

to customize content at the server for di�erent clients.

� Push Architecture [173]: provides a means to transmit information to a client

device without an explicit user request. The architecture comprises the client,

a push initiator and a push proxy gateway that: may provide client discovery

services; eÆcient encoding and protocol conversion; and ensures the push initiator

is authorized to deliver content to the client.

2.2.4 Session Layer

The Wireless Session Protocol (WSP) [181] provides client/server communication in two

modes: connection-less and connection-oriented.

Connection-less: a non-con�rmed request to, response from, or push from, the

server. This uses the Transport service (Section 2.2.7) and is useful for applications

that sometimes require communication without the overhead of session setup and

tear-down.

13

Connection-oriented: a session is created between a client and a server, and

within it reliable exchange of content can occur. The Class 2 Transaction service

(Section 2.2.5) is often used in this mode. Features include: the ability to negotiate

capabilities on connection setup; a push service within the context of a session; and

a lightweight session tear-down (suspend) and setup (resume) that allows a session

to be maintained over di�erent bearer networks.

The connection-oriented service design is based on HTTP/1.1 [48]. Method requests

and responses are made between the client and server, content types can be speci�ed and

negotiated and composite objects can be transmitted.

2.2.5 Transaction Layer

The Wireless Transaction Protocol (WTP) [183] provides communication between an

entity that initiates a transaction by making a request (the Initiator) and an entity that

receives, and optionally responds to the request (the Responder). There are three classes

of service:

Class 0: an unreliable one-way request from Initiator to Responder. This is in-

tended to be used within the context of a session when a push is required. The

direct use of the Transport protocol (Section 2.2.7) by a user is more eÆcient and

should be used instead if unreliable one-way requests are common.

Class 1: a reliable one-way request from Initiator to Responder. The receipt of

the request by the Responder must be acknowledged to the Initiator. This realizes

the reliable push service in WSP.

Class 2: a reliable request and reliable response between Initiator and Responder.

The request is acknowledged by the Responder and, likewise, the receipt of the

response at the Initiator is acknowledged to the Responder. This provides reliable

transaction-oriented communication between two endpoints.

The focus of this thesis is WTP Class 2. More details on the service and protocol

features of WTP Class 2 are given in Chapter 5.

2.2.6 Security Layer

The aim of the Security layer (Wireless Transport Layer Security (WTLS) [184]) is to

provide applications with privacy, data integrity and authentication. To do this, WTLS

speci�es procedures for setting up a secure transport connection and guidelines for the

types of security algorithms that can be used (e.g. Data Encryption Standard (DES) [11]

14

for bulk encryption, Rivest, Shamir, and Adleman public-key cryptosystem (RSA) [139]

or Elliptic Curve DiÆe-Hellman (ECDH) [108] for authentication). WTLS is an optional

layer and has a one-to-one mapping of service primitives to Transport service primitives.

This allows the users (e.g. WTP) to operate in the same manner, whether the security

layer is used or not.

2.2.7 Transport Layer

The Transport layer aims to quarantine the upper layers from the di�erences inherent in

the supported bearer services. The bearers include:

Cellular systems: GSM [116], ANSI-136 [156], PDC [117], CDMA [50], CDPD

[144]

Cordless phones: Digital Enhanced Cordless Telecommunications (DECT) [45],

Personal Handyphone System (Japan) (PHS) [129, 130]

Trunked radio: Terrestrial Trunked Radio Access (TETRA) [46]

Paging: Flex/ReFlex [114]

Proprietary: DataTAC [38], iDEN [115]

These bearers have di�erent characteristics. For example, the maximum round trip

time for the GSM SMS maybe 40 seconds, whereas for bearers supporting IP the round

trip time could be 3 seconds [183]. The WAP layers have to be designed to cope with

these di�erent characteristics. The Transport layer protocol (called Wireless Datagram

Protocol (WDP) [179]) provides an unreliable datagram service. For bearers that support

IP (e.g. GPRS and CDPD), the User Datagram Protocol (UDP) [131] is used. For all

other bearers (including GSM SMS and CDMA Circuit Switched Data (CSD)), WDP

speci�es a mapping from the bearer to the datagram service.

2.3 Wireless Transaction Protocol

The fundamental reason for verifying WTP is to gain con�dence that the design spec-

i�cation is correct and unambiguous. This is a good step towards ensuring di�erent

implementations of WTP can inter-operate and behave as expected. The correct opera-

tion of WTP is vital given that implementations are already available and being used for

many applications 3. This section surveys previous work on analysing WTP and similar

3An argument may be made that since implementations are available there is no point in verifying the
design. This can be refuted by the fact that the design/implementation is an iterative process, illustrated
by the regular updates made of the WAP standards, e.g. versions 1.0, 1.1, 1.2 and so on [172, 174, 187].

15

protocols.

The only published research on formally analysing WTP (or analysis by any means)

we are aware of is [74]. Transaction Class 1 is modelled as a timed automaton and state-

graph manipulators [73] (reduction and composition techniques that can be applied on

state spaces) are used to investigate the real-time properties of WTP. The focus of [74] is

on how di�erent manipulators reduce the state space when the values of time-out intervals

are varied. There are no results presented regarding the comparison of the protocol to

the service or deadlocks and livelocks in the protocol.

Within the WAP Forum, there was an attempt at formally analysing WTP using

SPIN [71], although it was incomplete [2]. There were no results reported.

Although WTP is a relatively new protocol (�rst released in 1998 [172]), it has simi-

larities with other transaction and transport protocols, the most notable being that they

provide end-to-end reliability. There are several attempts at formally analysing vari-

ous transport protocols, which are oriented towards data transfer as opposed to short

transactions. They include: TCP [133] using high-level Petri nets [39, 64, 107]; the OSI

Transport Service [82] and Protocol [81] using Petri nets [91, 10, 13]; and the Xpress

Transport Protocol (XTP) [191] using Estelle [22, 29], Temporal Logic of Actions [68],

and systems of communicating machines [105].

Transaction/TCP (T/TCP) [20] is an extension of TCP that provides an eÆcient

transaction service in the Internet. T/TCP has been speci�ed using timed and untimed

automaton models [149], and demonstrated to not provide the same service as TCP. Fol-

low on work [150] has shown the dependence of T/TCP on accurate clocks for transaction

protocols to provide eÆcient, reliable transactions.

Although some features of other transport and transaction protocols are similar to

those of WTP, there are substantial di�erences between them and the Transaction Service

and Protocol to warrant the formal veri�cation of WTP.

We have chosen to analyse Transaction Class 2 because it is the basis of many appli-

cations (e.g. WSP uses it for browsing functionality) and it is signi�cantly more complex

than Class 0 or 1.

Finally, transactions are a common form of communication in computer networks.

There are other architectures and protocols that make use of transactions (e.g. the Inter-

net Open Trading Protocol (IOTP) [23], Session Initiation Protocol (SIP) [65], T/TCP

[20]). Analysing WTP may lead to results that can be applied to transaction mechanisms

in general. The generalisation of our results is discussed in Chapter 10.

16

Chapter 3

Protocol Engineering

The basic systems engineering approach of incrementally re�ning the most abstract rep-

resentation of a system (e.g. user requirements) until a concrete or target implementation

is obtained, can be applied in the design of communication protocols (e.g. the Wireless

Transaction Protocol (WTP)). When formal methods (i.e. those based on mathematics)

are used in the design, the approach is called protocol engineering [103, 14]. This chap-

ter describes a general protocol engineering methodology [18], which is the basis for the

methodology used in verifying the WAP Transaction layer.

The basics of designing communication systems, that is building a layered architec-

ture, are described in Section 3.1. Section 3.2 explains the process and activities involved

in protocol engineering. The role of formal methods is also discussed. Section 3.3 con-

cludes this chapter by outlining the approach we have used in the remainder of this

thesis.

3.1 Layered Communication Architectures

The tasks involved for communicating between entities in a distributed system are, like

most complex systems, organised into a layered (or hierarchical) structure. This is called a

communication architecture. Each layer uses the services of the layers beneath to perform

functions, and together the functions provide a service to the layer above. The functions

of a layer may be de�ned by a communication protocol. The two main advantages of using

a layered structure are [154, 70]: the complex system can be partitioned into smaller sub-

systems that are easier to comprehend and design (i.e. divide and conquer); and layers

can be designed and built independently of other layers, which simpli�es maintenance,

allows competitive solutions, and can simplify the standardization process.

A well known communications architecture is the Reference Model for Open Systems

Interconnection (OSI) [80]. OSI, for which the layered architecture is shown in Figure 3.1

(based on Figure 11 of [80]), was developed jointly by the International Organization for

17

Standardization (ISO) and the Telecommunication Standardization Sector of the Inter-

national Telecommunication Union (ITU-T). This section introduces the central concepts

of OSI.

Physical

Data Link

Network

Transport

Session

Presentation

Application

Figure 3.1: Reference Model for Open Systems Interconnection (OSI)

3.1.1 Open Systems Interconnection

OSI is a seven-layer architecture, ranging from the physical layer up to the application

layer (Figure 3.1). As seen in Chapter 2 (Figure 2.2), WAP is a �ve-layer communications

architecture. The functions performed by each layer in the OSI Reference Model include:

Application: Manage the transfer of documents, messages and �les between ap-

plications.

Presentation: Negotiate the syntax and semantics of information sent by appli-

cations, including the encoding of data into standardized forms.

Session: Allow end hosts to establish a session between each other for ordinary

transport of data and enhanced services such as dialogue and synchronization con-

trol (e.g. re-starting a transport connection after a crash).

Transport: Ensure end-to-end delivery of packets from the source to destination.

Network: Establish mechanisms (including addressing, routing and congestion

control) for transmitting packets from the source to destination.

Data Link: De�ne frames of data, and control their transmission (including rate

of ow and errors) across a single link.

Physical: De�ne mechanical and electrical interfaces to the physical network, in-

cluding the modulation and coding schemes to be used.

18

The basic structure of a layered communications architecture is shown in Figure 3.2

(which is based partly on Figures 4, 5 and 7 in [80]). Each layer comprises entities that

perform functions within the layer. The capabilities provided by the entities in the (N)-

layer (and all layers below) at the boundary between the (N)-layer and (N+1)-layer is

called the (N)-service. The (N+1)-entities access the (N)-service by (N)-service-access-

points. Therefore, the logical path for exchange of information is vertically, via service-

access-points (SAPs). However, virtual communication occurs between peer (N)-entities

via a (N)-protocol. The (N)-protocol is discussed in Section 3.1.3.

(N)-entity

(N+1)-entity

(N)-entity

(N+1)-entity

(N)-protocol

(N)-service-access-point(N
+

1)
-la

ye
r

(N
)-

la
ye

r

Figure 3.2: Layers in a communications architecture

3.1.2 Service De�nition

The advantage of designing and building layers independently of other layers is only

possible when the boundaries between layers (i.e. the services) are well de�ned [166]. In

de�ning the (N)-service, an abstraction of the layered communication architecture, as

illustrated in Figure 3.3 (which is based partly on Figure 1 in [79]), can be made.

(N)-service-provider

(N)-service-user (N)-service-user

deliversubmit deliver

(N)-SAP (N)-SAP

submit

Figure 3.3: Abstraction of the (N)-service in a communications architecture

19

In Figure 3.3, the (N+1)-entities are designated (N)-service-users. The (N)-service-

provider represents all entities in the (N)-layer and all layers below that provide ca-

pabilities to the (N)-service-users. Therefore, the de�nition of the (N)-service requires

the interactions possible between the (N)-service-users and (N)-service-provider to be

de�ned. The conventions for de�ning OSI services are given in [79]. The interactions

between users and provider are described using service primitives.

A service primitive de�nes data that is issued by either the user or provider. The in-

formation conveyed by the primitive (i.e. the purpose, the conditions the user or provider

has met to issue the primitive, the expectations on the receiver) is given by a primitive

name, a primitive type and the parameters of the primitive. The primitive name iden-

ti�es the capability the primitive is providing. For example, the Transaction Service in

Chapter 5 includes the primitive name Invoke which is used to invoke a transaction. The

user that initiates the service facility is called the requestor , and the peer user for that

facility is called the acceptor . There are four primitive types:

1. request : submitted by the requestor user, initiating the use of the service facility;

2. indication: delivered to the acceptor user, conveying information from the request;

3. response: submitted by the acceptor user, responding to the indication; and

4. con�rm: delivered to the requestor user, conveying information from the response.

A sequence of primitive types may be [request,indication,response,con�rm], or a non-

con�rmed service may only use the [request,indication] sequence. In special circumstances

(e.g. an abort or disconnect issued by the service provider) only an indication primitive

type may be used. The four primitive types may be abbreviated to req, ind, res and cnf,

respectively.

The primitive parameters represent user data or control information, and may be

passed between primitive types (e.g. the values of the parameters of an indication prim-

itive are set to the same values of those in the corresponding request primitive). The

Transaction Service in Chapter 5 includes parameters such as Source and Destination

Addresses, Abort Codes and User Data. Primitives are structured as:

< servicename > � < primitivename > : < primitivetype >

For example, the Transaction Service has a primitive denoted as: TR-Invoke.request,

where TR is the abbreviation of the Transaction Service used in WAP. Parameters may

be given as a tuple following the primitive when necessary.

The de�nition of a service must specify all possible interactions of primitives. For

example, a possible interaction in the Transaction Service may be for one user to submit a

20

TR-Invoke.req primitive, resulting in a TR-Invoke.ind primitive (with the same parameter

values as the TR-Invoke.req primitive) being delivered to the peer user. As a result, a

service de�nition speci�es the possible set of global primitive sequences.

Once the (N)-service is de�ned, the (N+1)-entities can make use if it, without any

knowledge of the details of the (N)-protocol.

3.1.3 Protocol De�nition

The (N)-protocol is used for communicating between peer (N)-entities (Figure 3.2). Fig-

ure 3.4, based partly on Figures 4, 5 and 7 in [80], shows the virtual path of information

is directly between peer (N)-entities (referred to as (N)-protocol-entities). The informa-

tion is conveyed between peer (N)-protocol-entities in protocol data units (PDUs). As the

(N)-protocol-entities use the (N-1)-service, the logical path of information passes through

the (N-1)-service-provider.

(N)-service-user (N)-service-user

(N)-protocol-entity(N)-protocol-entity

logical path

(N-1)-service-provider

virtual path
(N)-protocol

(N-1)-SAP (N-1)-SAP

(N)-SAP (N)-SAP

Figure 3.4: Logical and virtual paths used by the (N)-protocol in a communications

architecture

A PDU is encapsulated in a service data unit (SDU) when transferred along the

logical information path. In Figure 3.4, PDUs used by the (N)-protocol are encapsulated

in SDUs that are transferred, but not interpreted, by the (N-1)-service-provider. The

(N)-protocol-entities, therefore, communicate by sending and receiving PDUs to each

other, and together provide a service to the (N+1)-layer (or (N)-service-users).

The de�nition of a protocol must specify the encoding of PDUs and the rules for

exchanging the PDUs. The encoding of a PDU comprises the de�nition of a header,

which conveys control information between (N)-protocol-entities, and the user data. The

21

rules de�ne the procedures for providing the desired service of the protocol. An aim of

protocol engineering is to design unambiguous protocols, which involves verifying that

the protocol provides the intended service. The next section details the process and

activities involved in protocol engineering.

3.2 Protocol Engineering Methodology

Protocol engineering involves the application of formal methods to the design of commu-

nication protocols. Section 3.2.1 describes the general process, and Section 3.2.2 points

out the major design activities in the process. Section 3.2.3 gives an overview of formal

methods and their application to protocols. This section is only a brief introduction to

the �eld of protocol engineering. For further information we refer the reader to other sur-

vey papers [103, 14], articles in special issues of journals [141, 152, 104] and proceedings

of conferences [135] that focus on protocol engineering.

3.2.1 Protocol Engineering Process

The protocol engineering process follows the top down methodology shown in Figure 3.5.

Architectural Design

Service Specification

Protocol Specification

Implementation

User Requirements

Figure 3.5: Steps of the protocol engineering process

As with any system, the requirements of the user drive its design and implementation.

For communication architectures, user requirements come from the types of applications

22

that are intended for use in the architecture. The �rst step is, therefore, to gather and

document user requirements.

Once the user requirements have been identi�ed, the communications architecture is

designed. As discussed in Section 3.1, the architecture is partitioned into layers so that

the complex system for providing the distributed applications required by the users is

easier to design and build.

Each layer in the communications architecture is then designed separately. Figure 3.5

shows this by the multiple boxes (one for each layer). The process applied to each

layer is: de�ne the service to be provided by the layer (Section 3.1.2); design a protocol

(or sometimes a class of protocols) that will provide the service (Section 3.1.3); and

generate a target implementation from the service and protocol speci�cations. Once

implementations of each layer are obtained, the communications architecture has been

built and designed. Section 3.2.2 describes the activities that are performed during the

protocol engineering process to ensure the communications architecture implemented

meets the requirements of the user.

3.2.2 Protocol Engineering Activities

The �rst activity in the protocol engineering process is gathering and documenting the

user requirements. There are no well-de�ned rules or procedures for this step that partic-

ularly apply for protocol engineering. However, techniques for capturing and analysing

user requirements from other domains (e.g. [151]) can be applied.

The design of the communications architecture is based on the environment that

applications are to be used in. In many cases, existing architectures or protocols can

be re-used (or at least the principles behind their design can be). For example, the

OSI Reference Model [80] provides a well-de�ned partition of functionality which an

architecture can be based upon, even if the OSI protocols are not used. Similarly, the

Internet architecture [35, 154], although not de�ned as clearly as OSI, is a starting point

for new communication architectures.

The activities applied for each layer are shown in Figure 3.6, which is based on Figure

1 in [14].

The steps for de�ning the service are given in Section 3.1.2. A de�nition of the

protocol to provide the service is then speci�ed (Section 3.1.3). In protocol engineering

these service and protocol speci�cations are formally de�ned. Section 3.2.3 introduces

suitable formal techniques. An important protocol engineering activity is to ensure the

protocol does indeed provide the speci�ed service. There are two approaches to doing

this:

1. Apply a synthesis technique on the service, automatically generating a conformant

23

Service Specification

Protocol Specification

Implementation

Verification
Performance
Evaluation

Testing
Generation
Automatic Code

Synthesis

Figure 3.6: Protocol engineering design activities for each layer

protocol (or components of the protocol). A survey of di�erent protocol synthesis

techniques can be found in [142]. Several examples of their application are in [91,

62, 119, 92]. Protocol synthesis is not applicable for existing protocol speci�cations.

2. Verify the protocol provides the service, in terms of the set of global primitive

sequences, by comparing the sequences generated by the two speci�cations [70].

The advantage of this approach is that the protocol can be designed without the

need for complex formal rules that re�ne the service. It can also be applied on

existing protocols, that have not yet been veri�ed. The major disadvantage is the

computational complexity in verifying the protocol against the service. This is

discussed more in Chapter 4.

These two approaches are complimentary: synthesis can be used to obtain some

components of the protocol (or a skeleton of the protocol design), and then after the

remainder of the protocol is designed, it can be veri�ed against the service.

It is insuÆcient for only the functional behaviour of the protocol design to be in-

vestigated. The protocol must also meet a set of performance criteria (usually speci�ed

in the service). Performance evaluation of the protocol design can be performed using

analytical, experimental or simulation techniques [140, 67].

The design of the service and protocol is an iterative process. For example, veri�cation

may identify errors in the service or protocol that need �xing. Similarly, performance eval-

uation may result in changes to the protocol, and hence veri�cation must be performed

again. It is not expected that iterations will not be required in the protocol engineering

methodology|the purpose of the methodology is to minimize the number of iterations,

especially those which occur across multiple steps in the process in Figure 3.5 (e.g. errors

in the architecture or service identi�ed as a result of testing the implementation).

Once the protocol has met its behavioral and performance requirements, an implemen-

24

tation is produced, preferably automatically from the protocol speci�cation [98, 28, 61].

When the code is not automatically generated, conformance testing must be performed

[122, 102, 168]. Test sequences may be generated from the protocol speci�cation. The

testing process should also evaluate the performance of the implementation against the

speci�cation.

Another activity that is part of the protocol engineering methodology, but not shown

in Figures 3.5 and 3.6, is maintenance. Once the communication protocols are in use,

undetected errors and the changing environment will require steps of the protocol en-

gineering process to be re-visited. This is expected, and where possible, speci�cations

should be designed with maintenance in mind.

3.2.3 Formal Methods

To obtain complete and unambiguous speci�cations in the design stages of protocol en-

gineering, formal methods can be used. Formal methods [27, 167] are those which are

based on mathematics. This means there is no room for mis-interpretation of the for-

mal speci�cations. Di�erent interpretations can lead to implementations that do not

inter-operate, thereby not providing the intended service to the distributed applications.

A major advantage of using formal methods in protocol engineering is the ability

to formally reason about the properties of a protocol, including verifying it against the

service. A set of formal analysis techniques are available that take advantage of the

mathematical foundation of the model. These include state space analysis, invariants

analysis, language theory and proofs [87, 163, 72]. As we will show in Section 3.3, state

space analysis, where basically all states of the system are explored (see Chapter 4),

and language theory (for comparing models at di�erent levels of abstraction) are the

analysis techniques of choice. Formal methods also assist in the other protocol engineering

activities.

There are several other features that formal methods must possess, in order for them

to be suitable for protocol engineering [14]. They include:

� intuitive modelling of concepts inherent in communication protocols, most notably

concurrency and non-determinism,

� the ability to specify systems at di�erent levels of abstraction (e.g. service and

protocol), and

� adequate support from computer tools.

A range of formal methods have been proposed as suitable for protocol engineering,

including: �nite state machines [84, 76, 97], net theory [136, 15, 188], programming

25

languages [120], process algebras [110, 69, 77], temporal logic [32, 60] and predicate logic

[148]. A comparison of the bene�ts of these and other formal methods is out of the scope

of this thesis and can be found elsewhere [14, 135]. We use Petri nets [118, 136, 127], and

more speci�cally, Coloured Petri nets [86, 87, 88], for the modelling and analysis of the

Transaction layer. The choice of Petri nets is made because:

� They support the desirable features previously described.

� They have been used to model and analyse a number of communication protocols

including signalling protocols [165], link-layer protocols [147, 66] and transport

protocols [13, 64, 107, 91, 99]. (Further examples can be found in [16] and several

conference proceedings [135, 134].)

� Our research group [36] has considerable experience with Petri nets (e.g. [17, 47,

165, 51, 85, 158]).

Coloured Petri nets are particularly applicable for the veri�cation methodology we

use in this thesis.

3.3 Veri�cation Methodology

The protocol engineering methodology in Section 3.2 applies to the whole life cycle of

communication protocols. The objective of this thesis is to verify that the WAP Transac-

tion Protocol re�nes the Transaction Service. This section, therefore, details the process

and activities applied in this thesis. The veri�cation methodology used comes from [18].

The �rst two steps in Figure 3.5, gathering the user requirements and designing the

communications architecture, have been performed by the WAP Forum. The WAP archi-

tecture [171] is described in Chapter 2. We assume the architectural design is adequate.

The Transaction layer is speci�ed in [183]. A detailed description is given in Chap-

ter 5. In summary, the service and protocol are informally speci�ed in [183] using nar-

rative descriptions and state tables. (Although state tables, with a de�nition of their

interpretation, may be a formal model, we illustrate in Chapter 7 that the state tables

given are ambiguous and incomplete, and therefore not a formal model.) The �rst step

is, therefore, to create formal models of the service and protocol. The veri�cation of

the protocol is then required. All other activities shown in Figure 3.6 are out of the

scope of this thesis. Performance evaluation of the Transaction Protocol is a vital part

of future work. Although implementations are in use, generating an implementation

from the formal speci�cation would be of use, especially in conformance testing of other

implementations [176, 157].

26

The veri�cation process begins by creating a formal model of the Transaction Service.

Figure 3.7 shows the process for modelling and analysing the service. The existing in-

formation provided in the WTP Speci�cation [183] is used to develop the Service Model.

As a part of future work, the Service Model may be used to generate programming inter-

faces for the implementation. The Service Model is used to calculate the Service State

Space, which is in turn used to calculate the Service Language. The Service Language

speci�es the set of global possible primitive sequences, and is used as the basis for com-

parison with the Protocol Language. Chapter 6 describes the modelling and analysis of

the Transaction Service.

WTP Specification

Service State Space

Service Language

Service Model

Verify

Interfaces

Service Process

Figure 3.7: Modelling and analysis steps for the Transaction Service

Figure 3.8 shows the process for modelling and analysing the Transaction Protocol.

The WTP Speci�cation [183] is used to create the Protocol Model. There are two types of

Protocol Model shown: Speci�cation and Analysis. The ideal approach is, �rstly, to create

a Speci�cation Model which de�nes the complete protocol. This model gives a concise

description of the protocol and can be used to generate implementations, either manually

or automatically. For analysis purposes, the Speci�cation Model often contains redundant

information that will increase the complexity of the analysis. Therefore, an Analysis

Model is created from the Speci�cation Model. The Analysis Model used depends on

the properties being investigated. For example, di�erent Analysis Models would be used

for veri�cation purposes and performance evaluation. Also, to cope with the inherent

complexity of the protocol, the analysis may be performed incrementally, resulting in

several Analysis Models (e.g. �rst omitting transmission errors, and then including them).

In this thesis we do not describe a Speci�cation Model (although considerable e�ort has

been spent on developing one), but instead focus on the Analysis Model. There are two

reasons for this: the state tables [183], with several modi�cations, provide a good basis

27

for the speci�cation; and to keep this thesis within practical size limits. The Analysis

Model is created by de�ning a set of restrictions and simpli�cations of the speci�cation.

These are justi�ed in Chapter 7.

WTP Specification

Implementation

Protocol Process

Protocol Model
(Specification)

Protocol Model

Protocol State Space

Protocol Language Verify against service

Properties

(Analysis)

Figure 3.8: Modelling and analysis steps for the Transaction Protocol

From the Analysis Protocol Model, the Protocol State Space can be calculated. Sev-

eral logical properties (e.g. successful termination, absence of live-locks) can be inves-

tigated from the Protocol State Space. The Protocol State Space can then be used to

calculate the Protocol Language which is compared with the Service Language to deter-

mine if the Transaction Protocol provides the set of sequences de�ned by the Transaction

Service. Chapter 4 describes the properties and veri�cation techniques in detail.

The steps shown in Figures 3.7 and 3.8 are repeated in several iterations. For the

Transaction Service, we only describe the �nal model and results (Chapter 6). An initial

model of the Transaction Protocol is presented in Chapter 7. Analysis of this model

reveals several errors in the protocol. These errors, and suggested �xes, are discussed in

Chapter 8. Chapter 9 presents the veri�cation results of a revised model of the Transac-

tion Protocol.

28

Chapter 4

Coloured Petri Nets

In Chapter 3 we explained how formal methods can be used to perform rigorous analysis of

systems. Petri nets are a formal method that are well suited to the analysis of distributed

systems because of their ability to express concurrency, non-determinism and system

concepts at di�erent levels of abstraction [14]. In this chapter, a tutorial style introduction

is given to Coloured Petri nets which are an extended version of Petri nets. The aim is

to provide enough practical details to understand the Coloured Petri net modelling and

analysis in the remainder of this thesis. Section 4.1 provides pointers to background

material on Petri nets. Section 4.2 describes, using a simple example, the main features

of Coloured Petri nets. Relevant analysis methods and computer tools are described in

Sections 4.3 and 4.4, respectively.

4.1 Petri Nets

Petri nets (PNs) were devised by Carl Adam Petri in the early sixties [128]. Since then

they have evolved into di�erent forms, which have been used to model and analyse a

variety of systems. Introductory publications on PNs (e.g. [136, 127, 41, 118]), their

variants (e.g. [86, 106, 169, 137]), for which a standardisation e�ort is in progress [78],

and the many applications (e.g. [134, 42, 88, 16, 138]) are widely available. Coloured

Petri nets (CPNs) [86, 87, 88] are one variant of PNs aimed at making it easier to model

complex systems.

Jensen [86] likened the connection between PNs and CPNs to that between an as-

sembly language (i.e. machine instructions) and high-level programming languages. The

computational power is the same but the high-level language is usually easier to use and

provides a more compact representation. In theory, CPNs can be transformed into (in�-

nite) PNs (although, in practice, this step is usually not required), giving them the same

computational power. However with CPNs, a system can be modelled in a manner that

is much more convenient for a human user.

29

4.2 Coloured Petri Nets

Coloured Petri nets (CPNs), like ordinary Petri nets, have a graphical form that is based

on an underlying mathematical de�nition (see [86]). For our case study, it is suÆcient that

we describe only the graphical form. Section 4.2.1 describes an example system, which

is then used to demonstrate a CPN's structure (Section 4.2.2) and dynamic behaviour

(Section 4.2.3).

4.2.1 Example System

We will use the example given in Figure 4.1 throughout this chapter. This CPN models

a simpli�ed book borrowing process with the following characteristics:

� library users, identi�ed by a name and the number of books they have already

borrowed, can borrow books or place them on hold;

� to borrow a book, there must be a librarian present, and the user must not go over

the borrowing limit (e.g. four books);

� the user can place a book on hold (if its available) without assistance from the

librarian and there are no limits on the number of books they can have on hold;

and

� we keep track of the books that are available for borrowing, have been borrowed or

are on hold.

Other features, such as collecting a book on hold, returning books etc. are not mod-

elled as the purpose of the model is just to demonstrate the major features and concepts

of CPNs.

4.2.2 Structure of a CPN

CPNs are directed graphs with two types of nodes: places and transitions. Directed

arcs can only be between nodes of di�erent types. We refer to an arc from a place to a

transition as an input arc and from transition to a place as an output arc. In Figure 4.1,

and in all CPNs, nodes are shown as ellipses and transitions as rectangles. In the example

of Figure 4.1 there are �ve places and two transitions. All nodes have a name. In our

example the name is given inside the node (e.g. place Employees, transition Borrow).

Places are typed by a colour set . We show the colour sets in italics next to the place.

For example, the place Out has a colour set Books. The colour set is de�ned in the declara-

tions, which are given in the box below the CPN in Figure 4.1. The colour set determines

the type of values that can mark a place (type and colour set are used interchangeably).

30

Employees

Employee

1‘Librarian

Available

Books

1‘ComputerNetworks++
1‘WirelessInternet

Users

User

1‘(Jack,0)++
1‘(Jill,4)

Out

Books

OnHold

Books

Borrow

[out<MAX_BOOKS]

Hold

(* Global Declarations *)
color Books = with ComputerNetworks | WirelessInternet;
color Employee = with Librarian;
color BooksBorrowed = int;
color Name = with Jack | Jill;
color User = product Name * BooksBorrowed;
val MAX_BOOKS = 4;
var b:Books;
var name:Name;
var out:BooksBorrowed;

b bb b

(name,out)

(name,out)

Librarian

(name,out+1)

Figure 4.1: Example CPN of a book borrowing procedure

These values are called tokens. The collection of tokens on a place is called its marking

(e.g. the marking of Available is 1`ComputerNetworks++1`WirelessInternet, which indicates

that one ComputerNetworks and one WirelessInternet token is in the place), and the mark-

ing of the CPN comprises the markings of all places. We often useM to denote a marking

of a CPN, and M(p) for the marking of a particular place p.

There are �ve colour (color) sets in the declarations. The �rst three, Books, Employee

and Name, are enumerated types of di�erent coloured tokens. For example, the colour

set Books consists of two colours: ComputerNetworks and WirelessInternet. Places typed

as Books can contain tokens of either of these colours. Place Available has one token of

each in Figure 4.1.

The fourth colour set, BooksBorrowed, is the set of integers (type int), used to indicate

the number of books borrowed. The �fth and �nal colour set, User, is a pair where the

�rst element must be a value from the colour set Name and the second from the colour

set BooksBorrowed. The marking of place Users, i.e. 1`(Jack,0)++1`(Jill,4), indicates

31

that there is a user named Jack who has not borrowed a book, and a user named Jill

who has borrowed 4 books. The remaining declarations in Figure 4.1 are a constant

(MAX BOOKS) and three variables (b, name and out). Other components of a CPN are

the inscriptions on arcs (given next to the corresponding arc, e.g. (name,out) on the arc

from Users to Borrow) and transitions (given in square brackets next to the transition,

e.g. [out<MAX BOOKS] for transition Borrow). These are best explained by examining

the dynamic behaviour of a CPN.

4.2.3 Dynamic Behaviour of a CPN

The execution of a CPN consists of occurrence (�rings) of transitions. A transition can

occur if it is enabled , and it is enabled when the following conditions are true:

1. for all the input places, enough tokens exist that satisfy the input arc inscription,

and

2. the transition inscription, or guard , evaluates to true.

For example, transition Borrow has three input places, Employees, Users and Available.

(Note that the double headed arc with one inscription is identical to an input arc and an

output arc with the same inscription.) The input arc from Employees requires a Librarian

token in the place, which is true (given by 1`Librarian above the place).

The input arc from Users has a pair with two variables as the inscription. This requires

a token in Users such that the variables can be bound to values. There are two bindings

of the variables that satisfy the inscription: name bound to Jack and out bound to 0; and

name bound to Jill and out bound to 4. The input arc from Available has the variable

b as an inscription, which can be bound to ComputerNetworks or WirelessInternet, as it

is typed by Books (see the declarations in Figure 4.1). The marking of place Available

satis�es this requirement.

Variables are local to a transition, in that, if we have the same variable, a, on any

input arcs to a transition, then a must be bound to the same value in each arc expression.

The variable must also take the same value in the guard and output arcs.

The �rst item of the enabling condition has been satis�ed. To be enabled, the guard

on Borrow, out<MAX BOOKS, must also evaluate to true. The input arc from Users

can be evaluated as (Jack,0) or (Jill,4). But only (Jack,0) will satisfy the guard because

for (Jill,4), out is bound to 4 which is not less than MAX BOOKS (also 4). Therefore,

the transition Borrow is enabled with the following values bound to the variables, which

from herein we refer to as binding elements (i.e. the variables are bound to values) when

associated with the transition:

BE1: Borrow: fname=Jack,out=0,b=ComputerNetworksg

32

BE2: Borrow: fname=Jack,out=0,b=WirelessInternetg

It can also be seen that in the initial marking the CPN transition Hold is enabled for

the following binding elements:

BE3: Hold: fname=Jack,out=0,b=ComputerNetworksg

BE4: Hold: fname=Jill,out=4,b=ComputerNetworksg

BE5: Hold: fname=Jack,out=0,b=WirelessInternetg

BE6: Hold: fname=Jill,out=4,b=WirelessInternetg

The enabling of these transitions illustrates several important concepts of CPNs.

Firstly, there is non-determinism present in the model. For example, it is not speci�ed

whether b should be bound to ComputerNetworks or WirelessInternet. Either case is pos-

sible. Also, as we have six enabled binding elements for the initial marking, they are

either enabled concurrently or in conict . Concurrently enabled binding elements are

those that can occur at the same time. Two binding elements in conict are enabled at

the same time but are not concurrently enabled. We will shortly see examples of each.

When a transition occurs, tokens required by the input arcs are removed from the

input places, and the evaluation of the expression on the output arcs (for a given binding

element) give the tokens to be added to the output places. If the �rst binding element

for Borrow occurred, then we have the following changes:

� one Librarian token removed from Employees;

� one (Jack,0) token removed from Users;

� one ComputerNetworks token removed from Available;

� one Librarian token added to Employees;

� one (Jack,1) token added to Users; and

� one ComputerNetworks token added to Out.

Figure 4.2 shows this second marking. The markings of the places are now shown

in boxes (this is the convention used by Design/CPN, a tool which is introduced in

Section 4.4.1). The encircled number indicates the total number of tokens on that place.

The binding elements concurrently enabled in the initial marking are: (1,6); (2,4);

(3,6); and (4,5). The binding elements in conict are: (1,2); (1,3); (1,4); (1,5); (2,3);

(2,5); (2,6); (3,4); (3,5); (4,6); and (5,6).

33

Employees

Employee

1 1‘Librarian

Available

Books
1 1‘Wireless

Internet

Users

User

2 1‘(Jack,1)
++ 1‘(Jill,4)

Out

Books
1 1‘Computer

Networks

OnHold

Books

Borrow

[out<MAX_BOOKS]

Hold

b bb b

(name,out)

(name,out)

Librarian

(name,out+1)

Figure 4.2: Second marking of the example CPN in Fig. 4.1

The important features of CPNs have now been introduced by stepping through the

occurrence of one transition. The following section describes the analysis methods that

will be used in the thesis to investigate the behaviour of the CPN models. The practi-

calities of CPN modelling and analysis are discussed in Section 4.4 on computer tools.

4.3 Analysis Methods

4.3.1 Simulation

The example in the previous section showed the CPN changing state from the initial

marking to a new marking when a speci�c binding element occurred. Another binding

element that was enabled in the new marking could occur resulting in a third marking.

We refer to this process of �ring a sequence of transitions as simulating (or executing)

the CPN model. Simulation has three main purposes:

1. To gain con�dence in the accuracy of the model. Simulating the model can identify

errors in its design and give con�dence that the model is an accurate representation

of the system being modelled. This is the debugging stage of the modelling and

analysis process.

2. To investigate speci�c sequences. Once we are con�dent in our model, sequences

can be simulated to investigate the behaviour of the system under speci�c scenarios.

34

3. To formally analyse the model. By simulating all possible sequences of binding

elements (and hence, calculating all possible states of the model) we can formally

reason about properties of the model. This is known as state space analysis and is

covered in the following sub-section.

4.3.2 State Space Analysis

The main bene�t of creating formal models is that certain properties of the models can

be proved. State space analysis is one method for doing this formal analysis.

A state space (of a CPN) is a directed graph with nodes representing the marking or

state of the model and arcs representing the binding elements or state changes1. From

a given initial marking, a state space can be generated by executing enabled binding

elements until all reachable markings have been generated. Hence, the state space rep-

resents all possible sequences of binding element occurrences or state changes from the

initial marking and also all possible states of the model. With this information a range

of properties can be proved (or disproved) for the model.

The state space for the example CPN (Figure 4.1) is shown in Figure 4.3. There are

nine nodes and 18 arcs. The markings and binding elements are shown in boxes (dashed

for binding elements) alongside the state space. The state change from node 1 to node 3

(via arc 2) corresponds to the binding element and resulting marking (Figure 4.2) given

as an example in Section 4.2. The marking shows, for all places in the CPN of Figure 4.1,

the place name followed by the marking of that place. The binding elements show the

transition name, followed by a record specifying the values that each variable is bound.

The following are some interesting properties of a model that can be proven from its

state space. The formal de�nition of these properties can be found in [86].

Reachability: From some marking (e.g. the initial marking) we can determine if

another marking is reachable. In the book borrowing example we could ask the

question: From the initial marking, can we reach a marking where both books

are out? The answer is yes|node 6 has place Out marked with 1`ComputerNet-

works++1`WirelessInternet.

Dead marking: If a marking has no successors then this state is a dead marking,

i.e. the system being modelled has terminated. An undesirable dead marking is

called a deadlock . Deadlocks indicate errors (in either the model or the system

being modelled), so functionally correct systems should be free of them. We call

a desirable dead marking a terminal marking . There are four dead markings in

1Throughout the thesis we use the terms node, state and marking interchangeably when referring to
the state space. Similarly, the terms arc, event and binding element are used interchangeably.

35

1
0:6

1
Employees: 1‘Librarian
Available:
1‘ComputerNetworks++
1‘WirelessInternet
Users: 1‘(Jack,0)++ 1‘(Jill,4)
Out: empty
OnHold: empty

2
1:3

2
Employees: 1‘Librarian
Available: 1‘ComputerNetworks
Users: 1‘(Jack,1)++ 1‘(Jill,4)
Out: 1‘WirelessInternet
OnHold: empty

3
1:3

3
Employees: 1‘Librarian
Available: 1‘WirelessInternet
Users: 1‘(Jack,1)++ 1‘(Jill,4)
Out: 1‘ComputerNetworks
OnHold: empty

4
2:3

4
Employees: 1‘Librarian
Available: 1‘ComputerNetworks
Users: 1‘(Jack,0)++ 1‘(Jill,4)
Out: empty
OnHold: 1‘WirelessInternet

5
2:3

5
Employees: 1‘Librarian
Available: 1‘WirelessInternet
Users: 1‘(Jack,0)++ 1‘(Jill,4)
Out: empty
OnHold: 1‘ComputerNetworks

6
2:0

6
Employees: 1‘Librarian
Available: empty
Users: 1‘(Jack,2)++ 1‘(Jill,4)
Out: 1‘ComputerNetworks++
1‘WirelessInternet
OnHold: empty

7
3:0

7
Employees: 1‘Librarian
Available: empty
Users: 1‘(Jack,1)++ 1‘(Jill,4)
Out: 1‘WirelessInternet
OnHold: 1‘ComputerNetworks

8
3:0

8
Employees: 1‘Librarian
Available: empty
Users: 1‘(Jack,1)++ 1‘(Jill,4)
Out: 1‘ComputerNetworks
OnHold: 1‘WirelessInternet

9
4:0

9
Employees: 1‘Librarian
Available: empty
Users: 1‘(Jack,0)++ 1‘(Jill,4)
Out: empty
OnHold: 1‘ComputerNetworks++
1‘WirelessInternet

1:1->2
Borrow: {out=0,
name=Jack,
b=WirelessInternet}

2:1->3
Borrow: {out=0,
name=Jack,
b=ComputerNetworks}

3:1->4
Hold: {out=4,
name=Jill,
b=WirelessInternet}

4:1->5
Hold: {out=4,
name=Jill,
b=ComputerNetworks}

5:1->4
Hold: {out=0,
name=Jack,
b=WirelessInternet}

6:1->5
Hold: {out=0,
name=Jack,
b=ComputerNetworks}

7:2->6
Borrow: {out=1,
name=Jack,
b=ComputerNetworks}

8:2->7
Hold: {out=4,
name=Jill,
b=ComputerNetworks}

9:2->7
Hold: {out=1,
name=Jack,
b=ComputerNetworks}

10:3->6
Borrow: {out=1,
name=Jack,
b=WirelessInternet}

11:3->8
Hold: {out=4,
name=Jill,
b=WirelessInternet}

12:3->8
Hold: {out=1,
name=Jack,
b=WirelessInternet}

13:4->8
Borrow: {out=0,
name=Jack,
b=ComputerNetworks}

14:4->9
Hold: {out=4,
name=Jill,
b=ComputerNetworks}

15:4->9
Hold: {out=0,
name=Jack,
b=ComputerNetworks}

16:5->7
Borrow: {out=0,
name=Jack,
b=WirelessInternet}

17:5->9
Hold: {out=4,
name=Jill,
b=WirelessInternet}

18:5->9
Hold: {out=0,
name=Jack,
b=WirelessInternet}

Figure 4.3: State space of the example CPN in Fig. 4.1

36

Figure 4.3 (nodes 6, 7, 8 and 9). If we require for successful termination of the

book borrowing system that no books are both on hold and borrowed, and no users

have more than their maximum number of books borrowed, then all of the dead

markings are terminal markings (i.e. no deadlocks).

Livelock: A livelock is a part of the state space that once entered, will repeat

forever. That is, a cycle is entered that leads to no markings outside of the cycle.

Livelocks are typically undesirable, and can indicate errors in the system. Figure 4.3

has no livelocks.

Bounds: The markings of places over the full state space determine the bounds

on those places. The upper bound of a place is the largest multi-set value it can

be marked with at any time. Similarly, a place has a lower bound. Integer bounds

(counting the number of tokens on a place) also exist. In the example, the upper

multi-set bound on Out is 1`ComputerNetworks++1`WirelessInternet and the upper

integer bound is 2.

These properties are important when attempting to verify the correctness of a model

against a set of criteria. In Chapter 9, some of these properties will be investigated for

the Transaction Protocol.

From the state space we can also calculate and draw a graph of the strongly connected

components (SCC) [86]. A strongly connected component is a maximal set of nodes

where, from each node in the set, all other nodes in the set are reachable. The SCC

graph is helpful in determining absence of livelocks, because if the SCC graph and state

space are isomorphic, and the state space contains no self loops (a self loop occurs when

the source and destination nodes of an arc are identical), then there are no livelocks.

Proving properties automatically from a state space is an important advantage of this

analysis technique for CPNs. However, state space analysis has two practical limitations,

especially when tackling complex systems:

1. the state space becomes too large to reasonably store in memory of conventional

computers (known as state explosion), and

2. the state space is dependent on the initial parameters of the model (e.g. maximum

values of counters).

One obvious approach to alleviate these problems, which is employed in this thesis,

is to model systems with state space analysis in mind. Abstractions of the actual system

should be made when the details are not necessary to prove the particular properties of

interest. Such abstractions are used in Chapters 6 and 7.

37

Many techniques for alleviating the state explosion problem have been proposed [163].

An approach that is used in this thesis, which can reduce the amount of memory consumed

at any one time to store the state space, is the sweep-line method [31].

4.3.3 The Sweep-Line Method

The sweep-line method for state space exploration [31] takes advantage of progress prop-

erties inherent in some systems to delete some states after they have been generated.

States can be deleted if we know for sure they cannot be reached again. This is known if

each state has a progress measure, which has the property that a state cannot by occur-

rence of transitions lead to a state with a lower progress measure. This analysis technique

is best explained by illustrating the steps it uses to construct the state space:

1. States are generated via breadth �rst traversal of successor markings of the initial

marking.

2. At any point in the state space the set of states reached can be divided into two:

processed (their successors calculated) and unprocessed (successors not calculated).

3. When the number of states processed reaches a user de�ned value, garbage collection

occurs. This involves:

(a) �nding the state among the unprocessed set with the minimum progress mea-

sure,

(b) deleting all states from the processed set that have a lower progress measure

than the state found in step (a).

4. The above step is repeated until all states have been processed (or a user de�ned

stop criteria has been satis�ed).

The sweep-line method traverses all the states of the full state space, but does not

store all the states simultaneously. Properties can be proven using on-the-y veri�cation.

For example, if checking whether a particular state is reachable from the initial marking,

a predicate specifying the reachability property is applied on states as they are calculated.

If the predicate returns true, the traversal can be stopped, returning the state to the user.

The properties that can be veri�ed on-the-y include those mentioned in Section 4.3.2.

A drawback of this method is that once, for example, an erroneous state has been found,

a path leading to it (which is useful for debugging purposes) may not have been stored.

It is expensive (compared to full state spaces) to �nd such a path.

Like most techniques that alleviate the state explosion problem, the sweep-line method

is suited to systems that exhibit a particular property, in this case, progress. A progress

38

measure must be de�ned for each state that gives it a value greater than or equal to its

predecessor state. Some example applications that may exhibit this are: communication

protocols that use counters or sequence numbers, systems with time that use a global

clock (e.g. timed CPNs [86]) and systems that have an iteration counter. In Chapter 9,

the sweep-line method is applied to the Transaction Protocol CPN. There we will see in

more detail, how a progress measure can be de�ned.

4.3.4 Language Analysis

As well as proving properties from it, a state space can be used as a means of comparing

di�erent models with respect to sequences of events (binding elements). A state space can

be treated as a �nite state automaton (FSA) [72], where the binding elements represent

the alphabet accepted by the FSA. Hence, the language of the FSA de�nes all possible

sequences of events. Theorems and algorithms developed for the analysis of FSAs can

be applied to determine if the sequences of one state space/FSA is preserved in another

state space/FSA [9, 72] (language equivalence). The approach is based on the fact that

any non-deterministic FSA with empty moves (�-transitions) can be converted into a

canonical form, a minimized deterministic FSA. If the canonical forms are isomorphic

then the two initial FSAs have the same language. This is useful when comparing models

at di�erent levels of abstraction, e.g. a design and its requirements, or a protocol and its

service. In Chapters 8 and 9 we will use language analysis to determine if the Transaction

Protocol correctly implements the Transaction Service.

There are other techniques that can be used for proving the language equivalence

of two systems [163]. For example, the Chaos-Free Failures Divergence (CFFD) model

[164] not only preserves sequences, but can also be used to check for deadlocks and

livelocks. However, as the state space is already calculated from the CPN (from which

deadlocks and livelocks can be calculated), CFFD o�ers no signi�cant advantages. The

main advantage of the approach used in this thesis is that there is adequate tool support,

as shown in the next section.

4.4 Computer Tools

The previous two sections introduced the features and concepts of CPNs and accompa-

nying analysis techniques. For practical use, computer tools are necessary to support

the modelling and analysis process. This section describes Design/CPN [109, 161] and

several other pieces of software used in the thesis.

39

4.4.1 Design/CPN

Design/CPN is a suite of tools for editing, simulating and analysing CPNs. We briey

describe the components that are used in this thesis. For more detailed descriptions the

reader is referred to the literature [109, 89, 90, 101, 30].

Editor

Design/CPN has a graphical editor that allows the user to create and layout the di�erent

net components. Auxiliary graphics (i.e. non-CPN components) can also be added to

enhance the model. The example CPN of Figure 4.1 was created in Design/CPN.

Design/CPN uses pages to visually divide the model into components. The pages do

not a�ect the execution or analysis of the model, but can enhance its maintainability and

readability. A hierarchy page must be present in all models and de�nes the pages in the

model and their relationships. Figure 4.4 shows the hierarchy page for Figure 4.1. Along

with the CPN page (called Borrow), there is a page with the state space analysis results.

Borrow#1

M Prime

Hierarchy#10 StateSpace#2

Figure 4.4: Hierarchy page for the example CPN in Fig. 4.1

CPNs on di�erent pages can be connected in two ways:

1. Fusion places: Copies of places can be created on di�erent pages and, if de�ned

to be part of the same fusion set, they act as the same place. Therefore, when a

fusion place on page A is marked with a token, then the corresponding fusion place

on page B is marked with the same token.

2. Substitution transitions: Hierarchy can be introduced into the model by represent-

ing a CPN on sub-page by a single substitution transition on a higher level page.

The input and output places of the substitution transition are called input and

output socket places, respectively (a place that is both input and output to the

substitution transition is an I/O socket place), and are also present on the CPN

page the substitution transition represents (the places on this sub-page are called

port places, and typically are assigned to socket places of the same name). A non-

hierarchical view of the Design/CPN net would involve replacing the substitution

transitions with their corresponding sub-pages.

Examples of fusion places and substitution transitions will be seen in Chapters 6

and 7.

40

Design/CPN uses CPN ML [109], a dialect of Standard ML [111, 159], for the net

inscriptions. The declarations in Figure 4.1 illustrate the use of several CPN ML con-

structs (colour sets, values, variables). Others (e.g. functions, more complex colour sets)

will be introduced when used in Chapters 6 and 7.

Simulator

The graphical CPN model in Design/CPN can be converted into Standard ML code. The

Design/CPN Simulator allows the user to execute this code in various ways:

Selecting binding elements: In a particular marking Design/CPN shows the

enabled transitions. The user can select one, choose the values the variables are

bound to, and �re the transition.

Random simulation with interactive feedback: A random sequence of bind-

ing elements is �red. The changing of markings and enabled transitions are dis-

played to the user as the sequence occurs. Di�erent feedback options can be set as

to the speed of the interaction.

Automatic simulation: A random sequence of binding elements is �red. No

feedback is given to the user except for the �nal marking.

The di�erent simulation options are used to debug the model and view speci�c se-

quences of events.

State Space Tool

The executable Standard ML code is also used to generate a full or partial state space

by using the state space tool [89]. All or part of the state space can be drawn in the

state space tool, showing the markings and binding elements (see Figure 4.3). However,

visually inspecting the state space is not an adequate technique for formal analysis,

especially when the number of states is non-trivial (e.g. more than 50). The state space

tool provides a set of functions to assist in �nding properties of the model. These include

functions to:

� refer to di�erent parts of the state space (e.g. markings, binding elements, successor

nodes of a node);

� search the state space (the user can, for example, set the search area and predicates

specifying the stop conditions);

� obtain some standard properties of the state space (including the dead markings,

bounds on places, liveness properties).

41

The standard properties, as well as the statistics (number of nodes, arcs etc.), can be

written to a �le as a report by Design/CPN. As well as obtaining the standard properties,

the above set of functions can be used to de�ne queries to prove more complex properties.

Examples of such functions will be given in Chapter 8.

Another feature of the state space tool is to allow the user to de�ne the information

displayed for the markings and binding elements. This is useful when treating the state

space as a FSA. Rather than printing the full binding element to a text �le, it can be

mapped to an integer. As we will see in Section 4.4.2, integers are used to represent the

alphabet of a FSA in the FSM tool.

There are other components of Design/CPN that can be used for analysis. These

include: performance analysis [101]; state spaces with equivalence classes [90]; state

spaces with symmetries [90]; and the sweep-line method [30]. Of these, we have applied

the sweep-line method in Chapter 9.

Sweep-line Library

The sweep-line library is in its early stages of development, and for the analysis in this

thesis we used a prototype implementation [30]. The major function of the prototype tool

is to install the sweep-line algorithm for state space generation instead of the standard

algorithm. The functions available once a full state space is calculated are not available in

the sweep-line library because they no longer apply for on-the-y veri�cation. A progress

measure must be written as a function that takes a marking and returns an integer.

To prove speci�c properties (such as deadlocks, bounds) the algorithm is modi�ed to

evaluate the necessary functions while calculating the state space with the sweep-line

method. The use of the sweep-line library will be demonstrated in Chapter 9.

4.4.2 FSM, LexTools and GraphViz

Design/CPN does not have any built in tools for analysing FSAs. Therefore, our approach

is to save the state space from Design/CPN as a text �le that can be used as input to

other FSA analysis tools. The most successful for our requirements have been the set

of libraries from AT&T: FSM [4], LexTools [6] and GraphViz [5]. Several parts of these

libraries are regularly used in Chapters 8 and 9.

FSM

FSM is a set of programs for analysing FSAs2. First, a text �le of the input FSA is

compiled into a binary form using fsmcompile. The input FSA is usually of the form:

2Throughout this thesis FSM is used to refer to the tool [4], not �nite state machines.

42

1 2 1

2 3 0

3 4 2

2

3

where lines with three integers correspond to source state, destination state and tran-

sition, lines with one integer give the halt states, and transitions which are 0 correspond

to empty or �-transitions.

The FSM programs regularly used are:

� fsmrmepsilon: Removes �-transitions from the FSA.

� fsmdeterminize: Convert the non-deterministic FSA into a deterministic FSA

(DFSA).

� fsmminimize: Convert a DFSA into its minimized form.

� fsmdifference: Returns the intersection of one FSA with the complement of a

second FSA.

� fsminfo: Return information about the FSA (including number of states, transi-

tions and halt states).

� fsmdraw: Speci�es, in a text form readable by GraphViz, the FSA, with optional

layout features, labels and colours.

Appendix A provides more details on the language analysis procedure, and gives an

example of the use of the tools.

LexTools

FSAs can be converted to and from languages, and analysis of the language can be

performed using the set of programs called LexTools. We make use of the program

lexfsmstrings which, given an FSA and a �le mapping transition numbers to labels,

writes the language of an acyclic FSA to a text �le.

GraphViz

GraphViz is a set of graph drawing tools that attempts to intelligently layout a graph

(from example, so as few as possible arcs cross). The program dot is used to take the

output from fsmdraw and create a PostScript version of a FSA. This is only useful when

small FSAs are to be drawn.

43

Chapter 5

De�nition of the Wireless

Transaction Protocol

The Wireless Transaction Protocol (WTP) can be seen as a reliable transport protocol

in the WAP architecture. Our objective is to investigate the functional behaviour of

WTP and verify certain properties. The purpose of this chapter is to provide a summary

of the WTP Speci�cation [183]. No attempt is made to discuss or justify any of the

decisions made in the design of WTP, as this chapter is meant to accurately reect

the WTP Speci�cation. A critical appraisal of WTP, including further explanation and

interpretations, is provided in Chapters 6 and 7, as a prelude to modelling WTP.

Section 5.1 outlines the structure of the WTP Speci�cation. Sections 5.2 and 5.3

respectively describe those sections in the WTP Speci�cation that mainly describe the

service and protocol. Parts of the WTP Speci�cation that are not relevant to the CPN

modelling and analysis are not included. Forward references to the modelling assumptions

and decisions in Chapters 6 and 7 that justify the exclusion of these parts are given

instead.

5.1 Structure of the WTP Speci�cation

The speci�cation of WTP is made publicly available by the WAP Forum [183]. This doc-

ument describes the purpose of WTP, and speci�es the service and protocol. Hereafter,

we will refer to the whole document as theWTP Speci�cation, to the service speci�cation

as the Transaction Service and the protocol speci�cation as the Transaction Protocol. As

discussed in Chapter 3, making the distinction between service and protocol is an impor-

tant step in the design of communication protocols. The WTP Speci�cation comprises

eleven sections and three appendices, totaling 67 pages.

44

Section 1 (Scope)1 summarizes in three paragraphs the purpose of WTP, namely to

provide a reliable request response service.

Section 2 (Document Status) provides pointers to the WAP Forum web site [170]

where the document can be downloaded and comments submitted.

Section 3 (References) lists normative and informative references.

Section 4 (De�nitions and Abbreviations) de�nes terms and abbreviations used in the

WTP Speci�cation.

Section 5 (Protocol Overview) summarizes WTP features and its relation to other

elements in the WAP architecture. It includes descriptions relevant to the service and

protocol. We outline this section in Section 5.2.

Sections 6 (Elements for Layer-To-Layer Communication) and 7 (Classes of Opera-

tion) describe the Transaction Service. A summary of these sections will be given in

Section 5.2.

Sections 8 (Protocol Features), 9 (Structure and Encoding of Protocol Data Units),

10 (State Tables) and 11 (Examples of Protocol Operation) describe the Transaction

Protocol. A summary of these sections will be given in Section 5.3.

In some parts of Sections 5 (Protocol Overview) to 11 (Examples of Protocol Op-

eration) there is no clear distinction between describing the Transaction Service or the

Transaction Protocol. This will be discussed further in Chapters 6 and 7.

There are three Appendices in the WTP Speci�cation [183]. Appendix A (Default

Timer and Counter Values) gives default timer and counter values for the following bearer

services: GSM SMS, GSM Unstructured Supplementary Services Data (USSD), and Bear-

ers supporting IP. The appendix states \The timers are initial estimates and have not yet

been veri�ed" (page 64, [183]). Appendix B (Implementation Note) provides guidance

to implementers on extending timers when large messages are in use. Appendix C (His-

tory and Contact Information) lists the history and contact information for the WTP

Speci�cation.

For consistency throughout this thesis, we introduce the following de�nitions:

TR-Service: Transaction Service. Those parts of the WTP Speci�cation that

de�ne the service.

TR-Protocol: Transaction Protocol. Those parts of the WTP Speci�cation that

de�ne the protocol.

TR-Init-User: User of the TR-Service that initiates a transaction.

TR-Resp-User: User of the TR-Service that responds to a transaction.

1When referring to sections from the WTP Speci�cation, we will include the section name in paren-
theses to distinguish references to sections in this thesis (which only include the number).

45

TR-User: Either the TR-Init-User or the TR-Resp-User.

TR-Service-Provider: A representation of the entities that provide the TR-

Service.

TR-Init-PE: Protocol entity that initiates a transaction.

TR-Resp-PE: Protocol entity that responds to a transaction.

TR-PE: Either the TR-Init-PE or the TR-Resp-PE.

5.2 Transaction Service

The majority of the TR-Service is described in Section 6 (Elements for Layer-to-layer

Communication) and Section 7 (Classes of Operation) of the WTP Speci�cation [183].

However, Section 5 (Protocol Overview) presents some information on the TR-Service,

and so we include it in this section. For the TR-Service the service primitives and param-

eters are de�ned and each class of service described. Along with textual descriptions, the

classes of service also have tables de�ning sequences of service primitives. The primitive

sequence tables specify which primitives may immediately follow other primitives. The

details of these descriptions are given in this section. As described in Chapter 2, Class

0 provides an unreliable one-way request service, Class 1 provides a reliable one-way re-

quest service, and Class 2 provides a reliable two-way request (request/response) service.

Where appropriate, we will limit the discussion to Transaction Class 2, as this is the

focus of the CPN modelling and analysis. We use identical section headings so a direct

correlation to the WTP Speci�cation is provided.

5.2.1 Protocol Overview

Section 5 (Protocol Overview) of the WTP Speci�cation [183] summarizes the protocol

features and its relation to other elements in the WAP architecture. It is divided into

seven sub-sections: Protocol Features, Transaction Classes, Relation to Other Protocols,

Security Considerations, Management Entity, Static WTP Conformance Clause, and

Other WTP Users.

The Protocol Features sub-section lists eleven features of the TR-Protocol. These

features are speci�ed in Section 5.3.1.

The Transaction Classes sub-section provides a narrative description of the basic be-

haviour of each of the TR-Protocol classes. The TR-Init-PE is de�ned as the WTP entity

initiating a transaction, and the TR-Resp-PE is de�ned as the WTP entity responding to

a transaction. The basic behaviour for Transaction Class 2 is speci�ed in Section 5.3.1.

46

The Relation to Other Protocols sub-section describes the relationship between the

TR-Protocol and other components in the WAP architecture. Table 5.1 (taken from

Section 5.3 (Relation to Other Protocols) of [183]) illustrates the relationship between

the TR-User and protocols providing it services (some indirectly).

WTP User
(e.g. WSP)

WTP Transaction Handling
Re-transmissions, duplicate removal, acknowledgments
Concatenation and separation

[WTLS] Optionally compression
Optionally encryption
Optionally authentication

Datagram Transport Port number addressing
(e.g. WDP) Segmentation and re-assembly (if provided)

Error detection (if provided)
Bearer Network Routing

(e.g. IP, GSM SMS/USSD, IS-136 Device addressing (IP address, MSISDN)
GUTS) Segmentation and re-assembly (if provided)

Error detection (if provided)

Table 5.1: Services provided to TR-User

The Security Considerations sub-section states there are no security mechanisms in

WTP.

The Management Entity sub-section describes the role of the WTP management

entity. It states the mobile device needs to satisfy the following conditions (page 15,

[183]):

� the mobile is within a coverage area applicable to the bearer service being invoked;

� the mobile having suÆcient power and the power being on;

� suÆcient resources (processing and memory) within the mobile are available to

WTP;

� the WTP protocol is correctly con�gured, and;

� the user is willing to receive/transmit data.

The management entity monitors the state of the mobile device and noti�es the

WTP layer if any of the above capabilities are not met. The management entity may

also be used by the TR-User to con�gure parameters of the WTP layer. There is no

speci�cation of what the management entity must do, nor how it interacts with the TR-

Protocol (except that it must interact with the mobile device) because it is considered

implementation speci�c.

47

The Static WTP Conformance Clause de�nes the features that are mandatory or op-

tional when usingWTP as a client or server. When describing the features in Section 5.3.1

all are assumed to be mandatory, unless otherwise speci�ed.

The Other WTP Users sub-section states the intended user of WTP is the Wireless

Session Protocol [181], but other applications may also use it.

5.2.2 Elements for Layer-to-Layer Communication

Section 6 (Elements for Layer-to-Layer Communication) of the WTP Speci�cation [183]

describes the service primitives and parameters used in the Transaction Service. It is

divided into three sub-sections: Notations Used, Requirements of the Underlying Layer,

and Services Provided to the Upper Layer.

The Notations Used sub-section describes how service primitives and parameters are

used, in a similar manner to OSI [79] (see Chapter 3). These will become apparent in

the following paragraphs.

The Requirements on the Underlying Layer sub-section states that WTP operates

over a datagram service that must provide (page 19, [183]): \Port numbers to route the

incoming datagram to the WTP layer; [and] Length information for the SDU passed up

to the WTP layer." The datagram service may optionally provide error detection. Lower

layers, such as the network layer, are expected to provide segmentation and re-assembly

functions.

The Services Provided to the Upper Layer sub-section describes the primitives used

in the TR-Service and their parameters. The service primitives used are:

TR-Invoke: Initiates a new transaction. Types: request (req), indication (ind),

response (res), con�rm (cnf).

TR-Result: Sends back a result of a previously initiated transaction. Types: req,

ind, res, cnf.

TR-Abort: Aborts an existing transaction. Types: req, ind.

Each primitive has a set of parameters and a corresponding table that speci�es

whether the parameter is mandatory, conditional or optional (discussed shortly).

The TR-Invoke parameters are:

Source Address: A unique address of the device at the TR-Init-User.

Source Port: The port number of the application at the TR-Init-User.

Destination Address: A unique address of the device at the TR-Resp-User.

48

Destination Port: The port number of the application at the TR-Resp-User.

Ack-Type: User acknowledgment - On or O�. If On, then the TR-Users must

acknowledge each indication primitive with a response primitive. If O�, then the

TR-PEs may optionally acknowledge PDUs without explicit acknowledgment from

the TR-Users. This feature is discussed further in Section 5.3.1.

User Data: The data carried by the protocol.

Class Type: 0, 1 or 2.

Handle: An alias that identi�es the transaction to the higher layer. This is only

used locally, i.e. by the TR-Init-User or the TR-Resp-User.

Table 5.2 (taken from Section 6.3 (Services Provided to the Upper Layer) of [183])

speci�es the parameters included in each TR-Invoke primitive. A mandatory parameter

(M) must be present in the service primitive. An equals sign (=) for a deliver primitive

(indication or con�rm) denotes the parameter must be equal to the parameter of the

same name in the corresponding submit primitive (request or response). An optional

parameter (O) either may or may not be present in the service primitive. A conditional

parameter (C) in a deliver primitive must (must not) be present if the optional parameter

of the same name in the corresponding submit primitive is (is not) present.

Parameter req ind res cnf

Source Address M M (=)
Source Port M M (=)
Destination Address M M (=)
Destination Port M M (=)
Ack-Type M M (=)
User Data O C (=)
Class Type M M (=)
Handle M M M M

Table 5.2: Parameters for TR-Invoke primitive

We have omitted the ExitInfo parameter from Table 5.2 because it cannot be used in

the Class 2 transactions (see Section 8.4 (Information in Last Acknowledgment) of the

WTP Speci�cation [183]).

There is one new parameter used by TR-Result primitives:

Exit Info: Additional user data sent to the TR-User on completion of the trans-

action.

Table 5.3 (taken from Section 6.3 (Services Provided to the Upper Layer) of [183])

speci�es the parameters included in each TR-Result primitive.

There is one new parameter used by TR-Abort primitives:

49

Parameter req ind res cnf

User Data O C (=)
Exit Info O C (=)
Handle M M M M

Table 5.3: Parameters for TR-Result primitive

Abort Code: The reason for the abort. It can be either one speci�ed by the TR-

Service-Provider or a reason de�ned by the TR-User. The TR-User de�ned reasons

are not speci�ed in [183], however WSP [181] does specify a set of abort codes.

Table 5.4 (taken from Section 6.3 (Services Provided to the Upper Layer) of [183])

speci�es the parameters included in each TR-Abort primitive.

Parameter req ind

Abort Code O C (=)
Handle M M

Table 5.4: Parameters for TR-Abort primitive

5.2.3 Classes of Operation

Section 7 (Classes of Operation) of the WTP Speci�cation [183] describes the legal service

primitive sequences seen by each TR-User. It is divided into three sub-sections: Class 0

Transaction, Class 1 Transaction, and Class 2 Transaction.

Table 5.5 (taken from Section 7.3 (Class 2 Transaction) of [183]) de�nes the legal

primitive sequences for the Class 2 Transaction. The sequences are started by a TR-

Init-User submitting a TR-Invoke.req primitive, and as a result, the TR-Resp-User being

delivered the TR-Invoke.ind primitive.

TR-Invoke TR-Result TR-Abort

req ind res cnf req ind res cnf req ind

TR-Invoke.req
TR-Invoke.ind
TR-Invoke.res X
TR-Invoke.cnf X
TR-Result.req X* X
TR-Result.ind X* X
TR-Result.res X
TR-Result.cnf X
TR-Abort.req X X X X X X X
TR-Abort.ind X X X X X X X
Note: A primitive listed in the column header may only be followed by primitives listed
in the row header that are marked with an X. Those marked with an X* are not possible
if the User Acknowledgment option is used.

Table 5.5: Legal primitive sequences for the Transaction Service

Also included in the Class 2 Transaction sub-section is a list of the PDUs used and

the general procedure. These will be covered in Section 5.3.

50

5.3 Transaction Protocol

The majority of the TR-Protocol is described in Sections 8 (Protocol Features), 9 (Struc-

ture and Encoding of Protocol Data Units), 10 (State Tables) and 11 (Examples of

Protocol Operation) of the WTP Speci�cation [183]. The details of these descriptions

(except the examples, which provide no additional information) are given in this section.

5.3.1 Protocol Features

Section 8 (Protocol Features) of the WTP Speci�cation [183] describes, in detail, the

di�erent protocol features. It is divided into 14 sub-sections2, one for each protocol

feature. Each sub-section describes one or more of the following components: motivation,

service primitives, PDUs, timer intervals and counters, and procedure. The following

summarizes the 14 protocol features.

Message Transfer

The two TR-PEs communicate using four primary PDUs: Invoke, Result, Ack and Abort.

Other PDUs are used for the optional Segmentation and Re-assembly (SAR) feature.

Section 5.3.2 describes the structure of the PDUs. The procedure for normal message

transfer (without aborts) in a single transaction involves �ve steps:

1. Upon the submission of a TR-Invoke.req from the TR-Init-User, the TR-Init-PE

sends an Invoke PDU to the TR-Resp-PE. The TR-Init-PE starts a re-transmission

timer and waits for a response. If a timeout occurs before receiving a response, then

the TR-Init-PE may either re-transmit the Invoke PDU (up to a �xed number of

times) or abort the transaction.

2. Upon receipt of the Invoke PDU, the TR-Resp-PE delivers the request to the TR-

Resp-User (TR-Invoke.ind) and waits for a result.

3. While waiting for the result (from the TR-Resp-User), the TR-Resp-PE may send

a \hold on" Ack PDU to the TR-Init-PE if the TR-Resp-User is taking too long to

acknowledge the Invoke PDU. Then the TR-Init-PE knows not to retransmit the

Invoke PDU. In this case, a TR-Invoke.cnf is delivered to the TR-Init-User.

4. A TR-Result.req primitive submitted by the TR-Resp-User triggers the TR-Resp-

PE to send the Result PDU. Upon receipt of the Result PDU by the TR-Init-PE,

2In fact only 13 sub-sections are given, but it is believed that a typographical error has lead to one
sub-section (Transmission of Parameters) not receiving a number. In previous versions of the WTP
Speci�cation [172, 174], and in the latest version [187], Transmission of Parameters is a sub-section.

51

a TR-Invoke.cnf (if not already delivered) and TR-Result.ind are delivered to the

TR-Init-User.

5. The TR-Init-PE acknowledges the Result PDU by sending an Ack PDU to the TR-

Resp-PE. If the TR-Init-PE receives a re-transmitted Result PDU, then it assumes

the TR-Resp-PE has not received the Ack PDU (e.g. due to a loss) and so re-

transmits the PDU. Upon a time-out, the TR-Init-PE removes any transaction

information and re-enters its initial state, after which it cannot re-transmit the Ack

PDU.

Re-transmission Until Acknowledgment

This feature is used to provide reliable transfer of PDUs when losses occur. A re-

transmission counter (which has a maximum value) and re-transmission timer (which

runs over a given interval) is required.

When a PDU is sent by a TR-PE the re-transmission timer is started. If the sending

TR-PE receives no acknowledgment of the receipt of the PDU at the peer TR-PE by

the time the re-transmission timer reaches the end of its interval (i.e. a time-out occurs),

then the PDU is re-transmitted. The re-transmission timer is re-started from 0. The

re-transmission counter is incremented by 1. The sender TR-PE again waits for an

acknowledgment. This procedure is repeated until either an acknowledgment is received,

the transaction is aborted, or a time-out occurs when the re-transmission counter is at its

maximum value. If the latter occurs, the transaction is aborted and the local TR-User

is noti�ed using a TR-Abort.ind primitive.

The �rst PDU sent has its re-transmission indicator (RID) �eld in the header (see

Section 5.3.2) set to 0. All re-transmitted PDUs have their RID set to 1. When RID is

set to 0, the receiving TR-PE can distinguish between re-transmitted PDUs and PDUs

duplicated by the network. If the receiver has already received a PDU with RID set to

0, then when it receives a second PDU with RID set to 0, it can ignore the second PDU

(it assumes it has been duplicated in the network). On receipt of a PDU with RID=1,

the receiving TR-PE cannot assume the PDU is duplicated because it may have been

a deliberate re-transmission by the peer TR-PE. The receiving TR-PE may act on this

(e.g. by re-transmitting a PDU). For example, if the TR-Resp-PE has sent an Ack PDU

acknowledging receipt of the Invoke PDU, then, upon receipt of a re-transmitted Invoke

PDU, the TR-Resp-PE may re-send the Ack PDU (it assumes the �rst Ack PDU was

lost).

The RID �eld is not suÆcient to ensure a re-transmitted Invoke PDU does not start a

transaction that has already been started (e.g. by the original Invoke PDU). The Trans-

action Identi�er Veri�cation feature, described shortly, is used to avoid this situation.

52

User Acknowledgment

This feature provides two options for the requirement on the TR-User to acknowledge

messages. When User Acknowledgment (UserAck) is On, a TR-PE cannot acknowledge

receipt of a PDU until the TR-User has acknowledged the receipt of the corresponding

primitive. This guarantees that when a con�rmation primitive is received by a TR-

User, the corresponding response primitive had been submitted by the peer TR-User.

Figure 5.1, based on Figure 2 in the WTP Speci�cation [183], shows an example sequence

of primitives when UserAck is On. Further explanation of this diagram will be given in

Chapter 6.

TR-Invoke.req
TR-Invoke.ind

TR-Invoke.res
TR-Invoke.cnf

TR-Result.req
TR-Result.ind

TR-Result.res
TR-Result.cnf

TR-Init-User TR-Service-Provider TR-Resp-User

Figure 5.1: Legal service primitive sequence when UserAck is On

The TR-Init-User sets the Ack-Type ag in the TR-Invoke.req primitive to 1 if they

want UserAck On. When set, UserAck must be On for the complete transaction. The

submission of the TR-Invoke.req primitive with Ack-Type=1 results in the U/P (User/Pro-

tocol entity) ag in the Invoke PDU being set to 1. Upon receipt of the Invoke PDU, the

TR-Resp-PE delivers the TR-Invoke.ind primitive (with Ack-Type=1) to the TR-Resp-

User and starts an acknowledgment timer. The TR-Resp-PE only sends an Ack PDU

after the TR-User has submitted a TR-Invoke.res primitive. If the TR-Resp-PE does not

receive a response from the TR-User after a speci�ed time, then the timer expires and

an Abort PDU is sent to the TR-Init-PE. A TR-Abort.ind primitive is also delivered to

the TR-Resp-User.

UserAck On is an optional feature, but WSP [181] makes use of it, and therefore it is

recommended to be implemented. When UserAck is O�, the protocol may acknowledge

the receipt of a PDU without a response from the TR-User. For example, in Figure 5.1,

the response primitives are omitted. Chapter 6 examines the di�erent possible sequences

when UserAck is On and O�.

53

Information in Last Acknowledgment

This feature allows the TR-User to attach information (e.g. performance measures) to

the last acknowledgment of a transaction. This information is given by the TR-User as

the ExitInfo parameter of the TR-Result.res primitive. The information is transported

as a Transport Information Item (TPI) in the variable part of the Ack PDU header. The

Information TPI cannot be included in the Ack PDU used to acknowledge the Invoke

PDU.

Concatenation and Separation

This feature allows multiple PDUs to be transferred in one SDU by the datagram layer.

The mechanisms for concatenating multiple PDUs into one SDU and separating one SDU

into multiple PDUs are not speci�ed. This is implementation dependent. However, the

structure of the PDUs used by this feature is speci�ed (see Section 5.3.2).

Asynchronous Transactions

This feature allows multiple transactions to be performed concurrently. A TR-Init-PE

may initiate a second transaction before a response to its �rst transaction is received.

The TR-Resp-PE should process transactions independently of other transactions. It

does not have to wait until a previous transaction is complete. If a TR-Resp-PE reaches

the maximum number of transactions it can simultaneously handle (this number is im-

plementation dependent) and receives an Invoke PDU, the TR-Resp-PE should ignore

and discard the Invoke PDU. An Abort PDU is not sent to the TR-Init-PE because the

TR-Resp-PE may accept re-transmitted Invoke PDUs at a later stage.

Transaction Abort

This feature allows the TR-User (by submitting a TR-Abort.req) to abort any outstand-

ing transaction (i.e. a transaction that is in progress). Also the TR-Service-Provider may

abort an outstanding transaction if there is an error in the TR-Service-Provider. An abort

reason is used to indicate who initiated the abort: TR-User or TR-Service-Provider.

There are three special cases that must be considered when aborts occur (page 32,

[183]):

1. The sending WTP provider has not yet sent the message: the provider MUST

discard the message from its memory.

2. The sending WTP provider has sent the message to the peer, or is in the process of

sending the message: the provider MUST send the Abort PDU to the remote peer

to discard all data associated with the transaction.

54

3. The receiving provider receives the Abort PDU: it generates the TR-Abort indication

primitive and discards all transaction data.

Note that the reference to the \WTP provider" in the WTP Speci�cation is equivalent

to the TR-PE. Similarly, a \message" is equivalent to a PDU.

Transaction Identi�er

Each transaction started by a single TR-Init-PE has a transaction identi�er (TID) as-

sociated with it. The TID, along with the source and destination addresses and ports,

uniquely identi�es a transaction. The TR-Init-PE increments the TID by one for every

new transaction it starts (no matter whether the TR-Resp-PE is the same or not). The

same TID is used in all PDUs sent within the transaction. The TR-Resp-PE, when receiv-

ing an Invoke PDU, uses the TID to detect old Invoke PDUs. The TR-Resp-PE should

be expecting an Invoke PDU with a TID higher than the previous transaction initiated

by the same TR-Init-PE. If it doesn't receive one, then TID veri�cation is performed

(discussed in the next protocol feature).

The TID is represented as a 16-bit integer. The highest order bit indicates the direc-

tion of the PDU sent (0 for TR-Init-PE to TR-Resp-PE, 1 for TR-Resp-PE to TR-Init-

PE). This is necessary when an application acts as both a TR-Init-User and TR-Resp-

User and uses the same port and address. If a received PDU on that port has the highest

bit set to 1, then the PDU is destined for the TR-Init-PE. Excluding the highest order

bit, there are e�ectively 215 unique TID values (0 to 32767). The TR-Init-PE cannot

increment the TID more than 214 times in a period of 2MPL. MPL (Maximum Packet

Lifetime) is the maximum time that packets are assumed to be in the network. The re-

striction on incrementing the TID is designed to ensure that when the TR-Init-PE starts

a transaction, old duplicate Invoke PDUs of the previous incarnation of that transaction

(e.g. 32768 transactions ago) are no longer in the network. There are two valid cases

where the current transaction TID may be less than the previous transaction TID: a

failure in the TR-Init-PE has led to it re-starting with a TID value less than the previous

one, and the TID values have wrapped (i.e. . . . , 32766, 32767, 0, 1, . . .). These cases

lead to TID veri�cation being performed.

The TR-Resp-PE determines whether TID veri�cation should be performed by cach-

ing the TID values of previous transactions. There is no requirement for the TR-Resp-PE

to perform caching (nor requirement on the type of caching mechanism), although it is

recommended to increase eÆciency of the protocol. If the TR-Resp-PE does not use a

cache, then every Invoke PDU received results in TID veri�cation being performed. If a

cache is being used, then the TID of the received Invoke PDU is compared to the TID of

the last transaction initiated by the same TR-Init-PE. The WTP Speci�cation gives an

55

example test algorithm, but other algorithms may be used. In general, the test should

fail (therefore, initiating TID veri�cation) when the received TID is less than or equal to

the last TID. If the test succeeds, then the last TID becomes the received TID and the

transaction proceeds (without TID veri�cation). An exception occurs when the TIDnew

ag (see Section 5.3.2) in the Invoke PDU is set. This empties the cache and forces TID

veri�cation to be performed. Chapter 7 provides further insight into appropriate testing

algorithms, and their requirements to ensure old Invoke PDUs do not initiate transactions

that have already been started.

Transaction Identi�er Veri�cation

TID veri�cation is performed when the TR-Resp-PE is uncertain if the Invoke PDU it

receives is valid (in which case, the TR-Init-PE wants the transaction performed) or an

old duplicate (the transaction should not be re-started). TID veri�cation is used to ask

the TR-Init-PE to con�rm or reject the Invoke PDU.

When the TR-Resp-PE detects that TID veri�cation is required (in general, the TID

of the PDU received is less than or equal to the TID of the last Invoke PDU received

for the same TR-Init-PE) an Ack PDU, with the Tve/Tok ag set (see Section 5.3.2), is

sent to the TR-Init-PE. Upon receipt of this Ack PDU, the TR-Init-PE responds based

on whether it wishes the TR-Resp-PE to proceed with this transaction or not:

1. If the TID of the Ack PDU is an outstanding TID of the TR-Init-PE, then the TR-

Resp-PE should proceed. The TR-Init-PE sends an Ack PDU, with the Tve/Tok

ag set.

2. If the TID of the Ack PDU is not an outstanding TID of the TR-Init-PE, then the

TR-Resp-PE should not proceed. The TR-Init-PE sends an Abort PDU with the

Abort Reason �eld set to INVALIDTID (see Section 5.3.2).

The TID veri�cation procedure amounts to a three-way handshake: an Invoke PDU is

sent from TR-Init-PE to TR-Resp-PE; the TR-Resp replies with an Ack PDU (Tve/Tok);

and the TR-Init-PE replies with an Ack PDU (Tve/Tok) if the TR-Resp-PE should pro-

ceed, or an Abort PDU (INVALIDTID) if the TR-Resp-PE should abort the transaction.

Transport Information Items

This feature allows additional information to be sent with PDUs in the variable part of the

header. This additional information is referred to as TPIs. There are four TPIs: Error,

Info, Option and Packet Sequence Number. The Error TPI is sent when an erroneous

TPI type is received (unless the erroneous TPI was received in the last message of the

56

transaction, when the receiver cannot notify the sender of the error). The latter three

TPIs are used by, and described with, other protocol features.

Transmission of Parameters

This feature allows protocol parameters to be transmitted between TR-PEs. This is

achieved using the Option TPI. There are no mandatory parameters. The SAR feature

de�nes several optional parameters.

Error Handling

When an error occurs in a TR-PE during a transaction the local TR-User must be noti�ed

and the transaction aborted (with an appropriate Abort reason).

Version Handling

If an Invoke PDU, with a version number not supported by the TR-Resp-PE, is received,

then the TR-Resp-PE must abort the transaction. The version number is de�ned in

Section 5.3.2.

Segmentation and Re-assembly

This feature allows PDUs that will be too large to be sent as one packet on the bearer net-

work to be segmented into smaller packets. The procedure for re-assembling the received

packets into one PDU is also de�ned. SAR is an optional feature and is not modelled

or analysed in the following chapters (see Chapter 7 for the justi�cation). Therefore, no

further details are given here, and the reader is referred to the WTP Speci�cation [183]

for further explanation (if desired).

5.3.2 Structure and Encoding of Protocol Data Units

Section 9 (Structure and Encoding of Protocol Data Units) of the WTP Speci�cation [183]

de�nes the formatting of the PDUs. It is divided into �ve sub-sections: General, Common

Header Fields, Fixed Header Structure, Transport Information Items, and Structure of

Concatenated PDUs. The following summarizes the �ve sub-sections.

PDUs in the TR-Protocol are formed as an integral number of octets, and contain

the following parts: �xed header; variable header; and data (optional). The structure of

the header parts depends on the type of PDU: Invoke, Result, Ack, Abort, Segmented

Invoke, Segmented Result and Segmented Ack. The type is de�ned by a PDU code,

always given as 4 bits in the �rst octet of the �xed header.

The following header �elds are present in two or more types of PDUs:

57

Continue Flag (CON): When set, indicates one or more TPIs are present in the

variable part of the header. If clear, indicates no TPIs are present, i.e. the variable

part of the header has a length of 0 octets. Also used in the TPI header.

Group Trailer Flag (GTR): When set, indicates the last packet of a group when

SAR is used. Used in combination with TTR (see the next �eld)|if both GTR and

TTR are set, then SAR is not supported.

Transmission Trailer Flag (TTR): When set, indicates the last packet of a

message when SAR is used. Used in combination with GTR|if both GTR and TTR

are set, then SAR is not supported.

Packet Sequence Number (PSN): Indicates the position of the packet in a seg-

mented message when using SAR.

PDU Type: Indicates the type of PDU: Invoke, Result, Ack, Abort, Segmented

Invoke, Segmented Result and Segmented Ack.

Reserved (RES): Bits reserved for future use.

Re-transmission Indicator (RID): Indicates whether the PDU is the �rst one

sent (0) or if it is a re-transmitted PDU (1).

Transaction Identi�er (TID): Associates the PDU with a transaction.

The Invoke PDU (the complete header of which is given in Figure 5.2, which is

taken from Section 9.3 (Fixed Header Structure) of the WTP Speci�cation [183]) has the

following additional header �elds:

Transaction Class (TCL): Indicates the class of the transaction: 0, 1 or 2.

TIDnew Flag: Indicates that the TID of the current transaction is lower than

the TID of the preceding transaction. This occurs, for example when the TID has

wrapped around.

Version: Indicates the version of WTP being used. The version in the WTP

Speci�cation [183] is 00x0 (or Version Zero).

User/Protocol Entity Flag (U/P): Indicates whether UserAck is On (1) (ac-

knowledgment provided by TR-User) or O� (0) (acknowledgment provided by TR-

PE).

The Result PDU header is given in Figure 5.3, which is taken from Section 9.3 (Fixed

Header Structure) of the WTP Speci�cation [183]. It has no additional header �elds.

58

Octet/Bit 0 1 2 3 4 5 6 7
1 CON PDU Type = Invoke GTR TTR RID
2 TID
3

4 Version TIDnew U/P RES RES TCL

Figure 5.2: Invoke PDU header structure

Octet/Bit 0 1 2 3 4 5 6 7
1 CON PDU Type = Result GTR TTR RID
2 TID
3

Figure 5.3: Result PDU header structure

The Ack PDU header is given in Figure 5.4, which is taken from Section 9.3 (Fixed

Header Structure) of the WTP Speci�cation [183]. It has the following additional header

�elds:

Tve/Tok Flag: Indicates if the Ack PDU is part of the TID veri�cation procedure

(see the Transaction Identi�er Veri�cation feature in Section 5.3.1). Tve indicates

the TR-Resp-PE is performing a veri�cation, and Tok (transaction ok) indicates

the TR-Init-PE wants the TR-Resp-PE to proceed with the transaction.

Octet/Bit 0 1 2 3 4 5 6 7
1 CON PDU Type = Ack Tve/Tok RES RID
2 TID
3

Figure 5.4: Ack PDU header structure

The Abort PDU header is given in Figure 5.5, which is taken from Section 9.3 (Fixed

Header Structure) of the WTP Speci�cation [183]. It has the following additional header

�elds:

Abort Type: Indicates whether the abort has been initiated by the TR-User or

the TR-Service-Provider.

Abort Reason: Indicates the reason for the abort. There are TR-Service-Provider

reasons (Unknown, Protocol Error, Invalid TID, Not Implemented Class 2, Not

Implemented SAR, Not Implemented User Acknowledgment, WTP Version Zero,

Capacity Temporarily Exceeded, No Response, Message Too Large) and TR-User

reasons (there are no reasons de�ned|these are speci�c to the local TR-User (e.g.

WSP [181])). Refer to the WTP Speci�cation [183] for descriptions of the abort

reasons.

59

Octet/Bit 0 1 2 3 4 5 6 7
1 CON PDU Type = Abort Abort type
2 TID
3

4 Abort reason

Figure 5.5: Abort PDU header structure

Further details on the SAR PDUs (Segmented Invoke, Segmented Result, Segmented

(or Negative) Ack) and the structure of the Transport Information Items and concate-

nated PDUs is omitted because these features are not modelled or analysed (see Chapter

7 for the justi�cation).

5.3.3 State Tables

Section 10 (State Tables) of the WTP Speci�cation [183] describes the timer, variables

and counters used in the TR-Protocol, and gives the state tables. It is divided into six

sub-sections: General (which simply provides an overview); Event Processing; Actions;

Timers, Counters and Variables; WTP Initiator; and WTP Responder.

Event Processing

The Event Processing sub-section describes how events are validated before they are

processed according to the state tables. Table 5.6 (taken from Section 10.2 (Event Pro-

cessing) of the WTP Speci�cation [183]) describes the tests on incoming events. The

incoming events are the receipt of request and response primitives from the TR-User,

the receipt of an indication primitive from the datagram layer (e.g. T-DUnitData.ind) or

internal events (e.g. time-outs) in the TR-PEs. If no action is taken, then the events are

processed according to the state tables. We have added Entry numbers to the left of the

table so we can clearly refer to individually entries.

Entry 1 in Table 5.6 indicates an Invoke PDU received by the TR-Resp-PE causes

a new transaction to be created and the Invoke PDU to be processed according to the

state tables.

Entry 2 refers to the TIDve ag (as do several entries in the state tables, as will be seen

shortly). This is an abbreviation for the TveTok ag in the Ack PDU header when the

Ack PDU is in the direction from TR-Resp-PE to TR-Init-PE. Similarly, in the opposite

direction the abbreviation TIDok is used. We also refer to the Ack PDU with TIDve and

TIDok set as the Ack(Tve) and Ack(Tok) PDUs, respectively.

Actions

The following actions are used in the state tables:

60

Test Action

1 UnitData.ind on the Responder: Invoke PDU Create a new transaction
2 UnitData.ind on the Initiator: Ack PDU with Send Abort PDU

the TIDve ag set, no matching outstanding (INVALIDTID)
transaction

3 UnitData.ind: Ack PDU, Result PDU or Abort Ignore
PDU, no matching outstanding transaction

4 Illegal PDU type or erroneous header Refer to entry `RcvErrorPDU' in state tables
structure

5 Bu�er overow or out-of-memory errors Send Abort PDU
(CAPTEMPEXCEED)

6 UnitData.ind on the Responder: Invoke PDU Send Abort PDU
requesting Class 2 transaction and Class 2 is (NOTIMPLEMENTEDCL2)
not supported

7 UnitData.ind on the Responder: Invoke PDU Send Abort PDU
using SAR and SAR is not supported (NOTIMPLEMENTEDSAR)

8 UnitData.ind on the Responder: Invoke PDU Send Abort PDU
requesting User Acknowledgment and User (NOTIMPLEMENTEDUACK)
Acknowledgment is not supported

9 UnitData.ind on the Responder: Invoke PDU Send Abort PDU
with Version 6= 00x0 (WTPVERSIONONE)

10 UnitData.ind on the Responder: Invoke PDU Ignore
when no more transaction requests can be
accepted

Table 5.6: Test of incoming events

Start timer, <interval>: Start the timer to run over the interval speci�ed. If

the timer is already running, it is re-started to run over the interval speci�ed.

Stop timer: Stop the timer.

Reset counter: Set the counter to 0.

Increment counter: Increment the counter by 1.

Queue (Time T): Queue a PDU for eventual delivery. The PDU is sent when

either the timer with interval T expires, or a Send action occurs (see below).

Send: Send the PDU and any PDUs queued to be sent.

Timers, Counter and Variables

Each transaction has a single timer associated with it. The timer is given an interval,

and a time-out occurs if the end of the interval is reached. The following timer intervals

are used by TR-PEs:

Acknowledgment interval (A): The time a TR-PE will wait for a response from

the TR-User before generating a time-out.

Re-transmission interval (R): The time a TR-PE will wait for an acknowledg-

ment from the peer TR-PE before generating a time-out.

61

Wait time-out interval (W): The time the TR-Init-PE will wait before deleting

all transaction state information. This interval does not apply to the TR-Resp-PE.

Although there is only one timer used, we refer to, for example, the timer given the

acknowledgment interval as the acknowledgment timer.

There are two counters used by the TR-PEs:

Acknowledgment Expiration Counter (AEC): Counts the number of times a

time-out occurs due to the acknowledgment timer expiring. If the counter reaches

its maximum value, AEC MAX, and another acknowledgment time-out occurs, the

transaction is aborted.

Re-transmission Counter (RCR): Counts the number of times a time-out oc-

curs due to the re-transmission timer expiring. If the counter reaches its maximum

value, RCR MAX, and another re-transmission time-out occurs, the transaction is

aborted.

Default values for the timer intervals and maximum counter values are given in Ap-

pendix A of the WTP Speci�cation [183].

Table 5.7 (taken from Section 10.4 (Timers, Counters and Variables) in the WTP

Speci�cation [183]) describes the variables used in the TR-Protocol by both TR-PEs.

Variable Type Description Comment

GenTID Uint16 The TID to use for the next transaction. Incremented Global
by one for every initiated transaction. Only Initiator

SendTID Uint16 The TID value to send in all PDUs in this transaction One per transaction
RcvTID Uint16 The TID values expected to receive in every PDU in One per transaction

this transaction.
RcvTID = SendTID XOR 0x8000

LastTID Uint16 The last received TID from a certain remote host One per remote host
Only Responder

HoldOn BOOL True if HoldOn acknowledgment has been received One per Class 2
transaction

Uack BOOL True if User Acknowledgment has been requested for One per transaction
this transaction

Table 5.7: Variables used by the Transaction Protocol

The two types used are Uint16 (a 16 bit unsigned integer) and BOOL (boolean). The

comment column speci�es where and when the variables are used. GenTID is a global

variable (i.e. applies across all transactions) that is used only by the TR-Init-PE. A new

set of the four variables SendTID, RcvTID, HoldOn and Uack must be de�ned for each

transaction. They are used by both TR-PEs. LastTID is a global variable used only

by the TR-Resp-PE, except in this case a new variable must be used for each di�erent

TR-Init-PE that starts a transaction with the TR-Resp-PE.

Note that the variable RcvTID is equivalent to SendTID except the highest order bit

is complemented. In hexadecimal, RcvTID = SendTID XOR 0x8000.

62

WTP Initiator and Responder

The WTP Initiator and WTP Responder sub-sections give the state tables for the TR-

PEs. There are four state tables for the TR-Init-PE and six state tables for the TR-

Resp-PE (one is for Class 1 transactions only). Each state table speci�es the major state

of one of the TR-PEs. (As we will see in Chapter 7, the complete state of a TR-PE

comprises both the major state it is in, or state name, and a set of values of variables and

counters used by the TR-PE.) The meaning of each state is given in Table 5.8 (although

this information is not given directly in the WTP Speci�cation, it is easily derived from

the state tables that are given).

State Name Signi�cance

NULL TR-Init-PE has not begun a transaction and is waiting for submission
of TR-Invoke.req from TR-Init-User.

RESULT WAIT TR-Init-PE has sent an Invoke PDU to the TR-Resp-PE and is waiting
for the result from TR-Resp-PE.

RESULT RESP WAIT TR-Init-PE has delivered TR-Result.ind to the TR-Init-User and is
waiting for acknowledgment of result from TR-Init-User.

WAIT TIMEOUT TR-Init-PE saves transaction information in case acknowledgment of
result needs to be re-transmitted to TR-Resp-PE.

LISTEN TR-Resp-PE is ready to accept transactions.
TIDOK WAIT TR-Resp-PE has initiated TID veri�cation and is waiting for

response from TR-Init-PE.
INVOKE RESP WAIT TR-Resp-PE has delivered TR-Invoke.ind to the TR-Resp-User and is

waiting for acknowledgment of the invoke from TR-Resp-User.
RESULT WAIT TR-Resp-PE is waiting for submission of TR-Result.req from

TR-Resp-User.
RESULT RESP WAIT TR-Resp-PE has sent Result PDU to TR-Init-PE and is waiting for

acknowledgment of the result from TR-Init-PE.

Table 5.8: Signi�cance of TR-PE state names

One scenario for a successful transaction would have the TR-Init-PE start in the

NULL state and traverse through the other states (in the order they are given in Table

5.8) until it returned to the NULL state when the transaction is �nished. Similarly, the

TR-Resp-PE would start in the LISTEN state and traverse through the other (bypass-

ing TIDOK WAIT if veri�cation of the TID is not required), returning to LISTEN on

completion.

The general structure of the state tables are described in the remainder of this sec-

tion, using the TR-Resp-PE LISTEN state table (Table 5.9) from the WTP Speci�cation

[183] as an example. All of the state tables from the WTP Speci�cation are given in Ap-

pendix B. Again we have numbered the entries, but only those that apply for Transaction

Class 2.

A state table is given for each possible state of the two TR-PEs. Table 5.9 de�nes

the procedures to follow when the TR-Resp-PE is in the LISTEN state. The state table

has four columns:

63

Event Condition Action Next State

1 RcvInvoke Class == 2 j 1 Generate TR-Invoke.ind INVOKE RESP
Valid TID Start timer, A WAIT
U/P ag Uack = True

2 Class = 2 j 1 Generate TR-Invoke.ind
Valid TID Start timer, A

Uack = False
Class == 0 Generate TR-Invoke.ind LISTEN

3 Class == 2 j 1 Send Ack(TIDve) TIDOK WAIT
Invalid TID

4 RcvErrorPDU Send Abort PDU (PROTOERR) LISTEN

Table 5.9: TR-Protocol state table: TR-Resp-PE LISTEN

Event: The incoming event. The incoming events are the receipt of request and

response primitives from the TR-User, the receipt of an indication primitive from

the datagram layer (i.e. the receipt of PDUs) or internal events (e.g. time-outs) in

the TR-PE.

Condition: The conditions, if any, of the incoming event. The conditions are

predicates on: the parameters of service primitives, header �elds of PDUs, counters

or variables.

Action: The action to be taken when the event occurs and the conditions are

met. The actions may be: sending PDUs; delivery of primitives to the TR-User; or

modifying variables, timers and counters.

Next State: Speci�es the next state for the TR-PE to enter after the action has

been taken. The next state must be one of the states de�ned by the state tables

(including the current state).

Each tuple of (event, condition, action, next state) can be referred to as a state table

entry. For example, there are �ve state table entries in the TR-Resp-PE LISTEN state

table, of which only four apply for Transaction Class 2. Chapter 7 provides further

explanations on interpreting the state tables.

64

Chapter 6

Transaction Service Speci�cation

The Transaction layer in the WAP architecture comprises a de�nition of the Transaction

Service (TR-Service) and the Transaction Protocol (TR-Protocol). As a �rst step towards

verifying that the Transaction layer possesses certain properties, the TR-Service must be

formally modelled and analysed. With a well de�ned service speci�cation, this step

should be straightforward. However, this chapter will show that the WTP Speci�cation

[183] contains an inadequate service speci�cation, leading to diÆculties with the CPN

modelling and analysis.

Most of the discussion in this chapter is a result of performing an initial CPN anal-

ysis of the TR-Service and TR-Protocol. Ambiguity in the TR-Service allowed several

interpretations of its meaning to be made. The initial models were based on di�erent

interpretations. Comparing the TR-Service CPN and TR-Protocol CPN models identi-

�ed inconsistencies between the two. This gave insights into the appropriateness of the

interpretations made, and they could be re�ned to obtain an unambiguous and accurate

TR-Service. For example, in [54] we presented a model of the TR-Service that didn't

enforce end-to-end behaviour of the service, and allowed TR-Abort primitives to occur

after a successful transaction. An early model of the TR-Protocol [56] was then compared

to the TR-Service, identifying inconsistencies in both models. Rather than present the

initial models of the TR-Service, a discussion of its drawbacks is given, and only the �nal

TR-Service model is presented.

In Section 6.1, the current service speci�cation is discussed. This leads to a set of

modelling assumptions and decisions for creating an adequate TR-Service CPN. Sec-

tion 6.2 describes the resulting CPN model. Section 6.3 presents the analysis results,

which include the TR-Service language for each value of UserAck (On and O�). This

chapter concludes with a discussion of the impact of the results on the remaining steps

in the veri�cation process.

Comments and suggestions from Professor Jonathan Billington regarding the de�ni-

tions of successful and aborted transactions were received throughout the candidature.

65

The initial idea of modifying the service in [54] to require end-to-end behaviour of the

primitives is also due to Professor Billington.

6.1 Discussion of the Transaction Service

The description of a communication architecture layer using both a service speci�cation

and a protocol speci�cation is a fundamental part of distributed systems design (as dis-

cussed in Chapter 3). Although there is no explicit division in [183], di�erent sections of

the WTP Speci�cation were identi�ed as de�ning the TR-Service (see Section 5.2) and

the TR-Protocol (see Section 5.3). The division was based on the majority of the content

of each section, as some TR-Service sections contained references to protocol features

(for example, sending and receiving PDUs), and vice versa. This is a shortcoming of

the WTP Speci�cation as the service and protocol should be described independently.

This section discusses the TR-Service given in the WTP Speci�cation [183]. The basic

behaviour of the TR-Service (i.e. when aborts do not occur) is discussed �rst, and then

the impact of aborts on the TR-Service are considered.

6.1.1 Structure of the TR-Service

The two core elements of the TR-Service de�nition are: the primitives and their param-

eters; and the set of possible primitive sequences. Figure 6.1 shows an idealized model of

the TR-Service. The primitives that can be submitted by, and delivered to, each TR-User

are shown. For clarity, the parameters are omitted. If the primitives are executed in the

correct sequence and the correct parameters are delivered, then the desired service will

be provided to the TR-Users.

TR-Invoke.cnf
TR-Result.ind
TR-Abort.ind TR-Abort.req

TR-Result.req
TR-Invoke.res

User
Responder

User
Initiator

Transaction Service Provider

TR-Invoke.req
TR-Result.res
TR-Abort.req

TR-Invoke.ind
TR-Result.cnf
TR-Abort.ind

Figure 6.1: Block diagram of the TR-Service

Only one TR-Init-User and one TR-Resp-User are considered in the system. This

is consistent with the de�nition of the TR-Service, where the primitive sequence table

(Table 5.5) speci�es the primitives for only one transaction. The TR-Users view the

66

TR-Service-Provider as a single entity. An example primitive sequence may comprise

of the TR-Init-User submitting a TR-Invoke.req primitive, resulting in the TR-Service-

Provider delivering a TR-Invoke.ind primitive to the TR-Resp-User. When describing

sequences of primitives, we categorize them into describing three types of transactions:

a successful transaction; an aborted transaction; or an incomplete transaction. The �rst

two types of transaction comprise sequences of primitives where the transaction has

been completed. The sequences may either be legal (the sequence is de�ned in the TR-

Service, e.g. Table 5.5) or illegal. An incomplete transaction, although possibly de�ning

part of a legal sequence, always consists of illegal sequences (i.e. a legal sequence must

de�ne a completed transaction). The remainder of this section uses these categories of

transactions to describe the TR-Service.

6.1.2 Basic Behaviour

The TR-Service can be separated into two types: UserAck O� and UserAck On. In the

primitive sequence table (Table 5.5) the two types are di�erentiated by the exclusion of

two possible primitive sequences (marked with a X*) when UserAck is On. This suggests

the set of primitive sequences with UserAck On is a subset of the set of primitive sequences

when UserAck is O�. In the following we describe the basic behaviour of each of the

types (i.e. when aborts do not occur). However, we �rst de�ne the conventions used in

the diagrams that illustrate service primitive sequences.

Time Sequence Diagram Conventions

Figure 6.2 is a time sequence diagram (TSD), whose conventions are based on those

de�ned in [79]. The vertical lines represent the interface between a TR-User and TR-

Service-Provider. They also represent the passage of time increasing from top to bottom.

The TR-Init-User is shown on the left and the TR-Resp-User on the right. The TR-

Service-Provider is shown between the two vertical lines. An arrow towards the vertical

line represents a service primitive being submitted by the TR-User. An arrow away

from the vertical line represents a service primitive being delivered to the TR-User. Two

horizontally aligned primitives (e.g. TR-Invoke.cnf and TR-Result.req) can occur in any

order (e.g. TR-Invoke.cnf then TR-Result.req, or TR-Result.req then TR-Invoke.cnf),

otherwise the ordering is determined from top to bottom. A (dashed) line in the TR-

Service-Provider is used to correlate a submitted primitive type (request or response) with

a delivered primitive type (indication or con�rmation). The absence of a line between

a submitted and delivered primitive indicates there is no time relationship between the

two. A (dashed) wave between two primitives (see Figure 6.5) indicates both options are

possible, i.e. the two primitives are related in time or the two primitives are not related

67

in time. The conventions for horizontally aligned primitives and lines or waves between

primitives di�er from those used in [79]. We have introduced them because they are

bene�cial for compactly describing di�erent scenarios in the TR-Service. Several of the

conventions are illustrated later in this chapter.

TR-Invoke.req
TR-Invoke.ind

TR-Invoke.res
TR-Invoke.cnf

TR-Result.req
TR-Result.ind

TR-Result.res
TR-Result.cnf

TR-Init-User TR-Service-Provider TR-Resp-User

Figure 6.2: Basic primitive sequence for the TR-Service with UserAck On

UserAck On

When UserAck is On, a primitive sequence indicative of the basic behaviour of the TR-

Service is shown in Figure 6.2. This sequence shows the TR-Init-User making a request

(TR-Invoke.req) which is delivered to the TR-Resp-User (TR-Invoke.ind). The TR-Resp-

User con�rms the request was received (TR-Invoke.res) which is in turn delivered to the

TR-Init-User (TR-Invoke.cnf). After con�rming the receipt of the request, the TR-

Resp-User sends the result (TR-Result.req), which is delivered to the TR-Init-User (TR-

Result.ind). Finally, the TR-Init-User con�rms the receipt of the result (TR-Result.res),

resulting in a TR-Result.cnf primitive being delivered to the TR-Resp-User. From the

primitive sequence table (Table 5.5), no primitive can follow a TR-Result.cnf primitive at

the TR-Resp-User. The question arises as to whether the sequence in Figure 6.2 consti-

tutes a successful transaction. We believe it does, but the WTP Speci�cation contains no

statements regarding the end of a transaction sequence. Therefore, we make the following

assumption about the successful completion of a transaction primitive sequence:

Assumption 6.1 (Successful Transaction (UserAck On)). A successful transac-

tion in the TR-Service (with UserAck On) is any legal sequence de�ned in Table 5.5

that is complete when the TR-Init-User has submitted the TR-Result.res primitive and

the corresponding TR-Result.cnf primitive has been delivered to the TR-Resp-User.

From our explanations of complete and incomplete transactions in Section 6.1.1, As-

sumption 6.1 does not include the scenario where a TR-Abort.req or TR-Abort.ind prim-

itive at the TR-Init-User follows a TR-Result.res primitive. These TR-Abort primitives

are discussed in Section 6.1.3.

68

UserAck O�

When UserAck is O�, the UserAck On set of primitive sequences is possible. There are

other sequences that are possible, due to the inclusion of the entries in the primitive

sequence table (Table 5.5) marked with X*. Therefore, we only discuss those sequences

that are possible when UserAck is O�, but not when UserAck is On.

Again, there is no indication of transaction completion for the primitive sequences. If

Assumption 6.1 is followed, two possible primitive sequences are shown in Figure 6.3.

TR-Invoke.req
TR-Invoke.ind

TR-Result.req
TR-Result.ind

TR-Result.res
TR-Result.cnf

TR-Init-User TR-Service-Provider TR-Resp-User
TR-Invoke.req

TR-Invoke.ind

TR-Result.req
TR-Invoke.cnf

TR-Result.res
TR-Result.cnf

TR-Init-User TR-Service-Provider TR-Resp-User

TR-Result.ind

(a) (b)

Figure 6.3: Basic primitive sequence for TR-Service with UserAck O�. (a) TR-Result.req

implicitly acknowledges receipt of Invoke. (b) TR-Invoke.cnf delivered without explicit

TR-Invoke.res from TR-Resp-User.

The sequence in Figure 6.3(a) di�ers from that in Figure 6.2 because the TR-Resp-

User does not explicitly acknowledge the receipt of an invocation. Instead, the receipt of

the result by the TR-Init-User implicitly acknowledges the invoke has been received.

The sequence in Figure 6.3(b) also represents a valid sequence from the primitive

sequence table (Table 5.5). Here, a TR-Invoke.cnf primitive is delivered to the TR-Init-

User before the TR-Result.ind primitive. However, the TR-Resp-User has not submitted

a TR-Invoke.res primitive, and therefore the TR-Invoke.cnf is incorrect|it should con�rm

the response from the TR-Resp-User, i.e. the primitives should be end-to-end. This end-

to-end principle is often used for service de�nitions. The OSI conventions [79] for using

service primitives states in clause 6.1(b):

Only service primitives which relate to some element of the service involving

service-users in the environment need to be considered. The interactions which

are related only to local conventions between the service-user and service-

provider do not have to be considered in a service de�nition. For example,

strictly local functions could be provided in some implementations. As they

do not involve other service-users, such functions are not visible outside the

local system. (page 8, [79])

This implies that the service de�nition is at a higher level of abstraction than, for

example, just the interactions between a TR-User and TR-PE. Interactions between the

69

TR-User and TR-Service-Provider that are not end-to-end are called local user events.

This convention is important in both the TR-Service and TR-Protocol (Chapter 7). We

now make the following assumption:

Assumption 6.2 (End-to-End Behaviour). The TR-Invoke and TR-Result primi-

tives exhibit end-to-end behaviour. That is, the global sequence of primitive types must

occur in the order: request, indication, response, then con�rm. (A primitive type cannot

occur before any of its predecessors have occurred.) However, it is not necessary for all

of the primitive types to occur in a legal primitive sequence.

So far, Assumption 6.1 has been used to indicate the completion of a successful

transaction. With UserAck O�, however, the TR-Users are not required to explicitly

acknowledge the receipt of the invoke or the result. Therefore, the primitive sequence in

Figure 6.4 is also possible.

TR-Invoke.req
TR-Invoke.ind

TR-Result.req
TR-Result.ind

TR-Init-User TR-Service-Provider TR-Resp-User

Figure 6.4: Basic primitive sequence for TR-Service with UserAck O�. TR-Users are not

involved in acknowledgment of the result.

The successful completion of a transaction when UserAck is O� is now de�ned as:

Assumption 6.3 (Successful Transaction (UserAck O�)). A successful transac-

tion in the TR-Service (with UserAck O�) is any legal sequence de�ned in Table 5.5

that is complete when either:

1. the TR-Init-User has submitted the TR-Result.res primitive and the corresponding

TR-Result.cnf primitive has been delivered to the TR-Resp-User, or

2. the TR-Resp-User has submitted the TR-Result.req primitive and the corresponding

TR-Result.ind primitive has been delivered to the TR-Init-User.

Assumption 6.3 means that if the TR-Init-User has been delivered the TR-Result.ind

primitive, and follows up with the submission of the TR-Result.res primitive, then the

transaction is not successful if the TR-Result.cnf primitive is not delivered to the TR-

Resp-User. Section 6.1.3 discusses the signi�cance of such a transaction.

70

6.1.3 Aborted Transactions

The basic behaviour of the TR-Service does not consider transactions that are aborted.

A transaction abort can be initiated by the TR-User (submitting a TR-Abort.req) or

the TR-Service-Provider (delivering a TR-Abort.ind). The primitive sequence table (Ta-

ble 5.5) speci�es that a TR-Abort.req or TR-Abort.ind primitive can follow any primitive

except themselves and a TR-Result.cnf primitive. In this sub-section, we discuss when it

is appropriate for an abort to occur, and the impact that this has on the transaction.

An abort cannot occur before a TR-Invoke.req primitive because the transaction is

not in progress. After a TR-Invoke.req primitive has been submitted by the TR-Init-User,

aborts may occur.

In general, there are four cases when both TR-Users are aware that an abort has

occurred:

1. A TR-User submits a TR-Abort.req and the peer TR-User is delivered a TR-

Abort.ind (Figure 6.5(a)).

2. A TR-User submits a TR-Abort.req and the TR-Service-Provider initiates an abort

by delivering a TR-Abort.ind to the peer TR-User (Figure 6.5(b)|Section 6.1.2

explains the wave between primitives).

3. Both users submit TR-Abort.req primitives (Figure 6.5(c)).

4. The TR-Service-Provider initiates an abort, delivering TR-Abort.ind primitives to

both users (Figure 6.5(d)).

The above four abort scenarios represent an aborted transaction.

There are two special cases when aborts occur that also need consideration. The �rst

special case is when an abort occurs after the TR-Init-User has submitted a TR-Invoke.req

primitive, but before the TR-Resp-User has been noti�ed of the invoke (TR-Invoke.ind

has not yet occurred). Since the TR-Resp-User has no knowledge the transaction has

started, the abort only needs to be known by the TR-Init-User. Figures 6.6(a) and 6.6(b)

illustrate the two possible primitive sequences for this special case.

The second special case deals with aborts occurring after the TR-Init-User has sub-

mitted a TR-Result.res primitive. The primitive sequence table (Table 5.5) states a

TR-Abort.req or TR-Abort.ind primitive may follow the TR-Result.res primitive at the

TR-Init-User. This should not be possible because after the TR-Init-User has received

the result (TR-Result.ind) and acknowledged it (TR-Result.res), then the transaction

has been successfully completed. The TR-Init-User should not have to wait to see if the

transaction is aborted after it has acknowledged the result. For example, we can consider

71

TR-Invoke.req
TR-Invoke.ind

TR-Abort.req
TR-Abort.ind

TR-Init-User TR-Service-Provider TR-Resp-User TR-Invoke.req
TR-Invoke.ind

TR-Abort.reqTR-Abort.ind

TR-Init-User TR-Service-Provider TR-Resp-User

(a) (b)

TR-Invoke.req
TR-Invoke.ind

TR-Abort.reqTR-Abort.req

TR-Init-User TR-Service-Provider TR-Resp-User

TR-Invoke.req
TR-Invoke.ind

TR-Abort.indTR-Abort.ind

TR-Init-User TR-Service-Provider TR-Resp-User

(c) (d)

Figure 6.5: Abort primitive sequences for TR-Service. (a) TR-Abort.req followed by

TR-User initiated TR-Abort.ind. (b) TR-Abort.req and TR-Service-Provider initiated

TR-Abort.ind. (c) TR-Abort.req primitives from TR-Users. (d) TR-Service-Provider

initiated TR-Abort.ind primitives.

TR-Invoke.req

TR-Abort.req

TR-Init-User TR-Service-Provider TR-Resp-User

TR-Invoke.req

TR-Abort.ind

TR-Init-User TR-Service-Provider TR-Resp-User

(a) (b)

Figure 6.6: Abort primitive sequences for TR-Service when there is no interaction with

the TR-Resp-User. (a) TR-Invoke.req followed by TR-Abort.req from TR-Init-User. (b)

TR-Invoke.req followed by TR-Abort.ind initiated by TR-Service-Provider.

72

the WSP [181] which uses the TR-Service (with UserAck On) for the method invoca-

tion feature. The client (TR-Init-User) makes a method request (using the TR-Invoke

primitives) and a result is returned (using the TR-Result primitives). After the client

has submitted the TR-Result.res primitive, the client protocol entity in WSP returns to

the NULL state. This means the TR-User does not allow any aborts to occur after the

submission of the TR-Result.res primitive.

Although the TR-Init-User cannot submit a TR-Abort.req primitive after the TR-

Result.res, local user events can still occur. For example, the TR-Init-PE maintains state

information after the TR-Result.res is submitted. The TR-Init-User may indicate to the

TR-Init-PE to delete this state information. However, this does not correspond to a

TR-Abort.req being submitted, as primitives have end-to-end intent, rather than local

intent.

When UserAck is O�, a successful transaction may be completed after the TR-Init-

User has been delivered the TR-Result.ind primitive, or the TR-Resp-User has been

delivered the TR-Result.cnf primitive (Assumption 6.3). However, Table 5.5 allows TR-

Abort primitives after the TR-Result.req and TR-Result.ind primitives. This is satisfac-

tory because the TR-Resp-User may attempt to abort the transaction after submitting

the TR-Result.req primitive, to notify the TR-Init-User that it is not expecting acknowl-

edgment of the result. Similarly, the TR-Init-User may submit an TR-Abort.req primitive

after being delivered the TR-Result.ind primitive to notify the TR-Resp-User the trans-

action has been aborted and an acknowledgment of the result (TR-Result.cnf) should

not be expected.

The discussion on aborts is summarized in Assumptions 6.4 to 6.8. Assumptions 6.4

and 6.5 include the possibilities of the TR-Resp-User submitting TR-Abort.req primitives

after the TR-Result.req primitive. These override Assumptions 6.3 and 6.1, respectively.

Assumption 6.4 (Successful Transaction (UserAck O�)). A successful transac-

tion in the TR-Service (with UserAck O�) is any legal sequence de�ned in Table 5.5

that is complete when either:

1. the TR-Init-User has submitted the TR-Result.res primitive and the corresponding

TR-Result.cnf primitive has been delivered to the TR-Resp-User;

2. the TR-Resp-User has submitted the TR-Result.req primitive and the corresponding

TR-Result.ind primitive has been delivered to the TR-Init-User;

3. the TR-Init-User has submitted the TR-Result.res primitive, and the TR-Resp-

User has submitted the TR-Result.req primitive followed by the submission of a

TR-Abort.req primitive or delivery of a TR-Abort.ind primitive; or

73

4. the TR-Resp-User has submitted the TR-Result.req primitive followed by the sub-

mission of a TR-Abort.req primitive or delivery of a TR-Abort.ind primitive, and

the TR-Init-User has been delivered the TR-Result.ind primitive.

Assumption 6.5 (Successful Transaction (UserAck On)). A successful transac-

tion in the TR-Service (with UserAck On) is any legal sequence de�ned in Table 5.5

that is complete when either:

1. the TR-Init-User has submitted the TR-Result.res primitive and the corresponding

TR-Result.cnf primitive has been delivered to the TR-Resp-User; or

2. the TR-Init-User has submitted the TR-Result.res primitive, and the TR-Resp-

User has submitted the TR-Result.req primitive followed by the submission of a

TR-Abort.req primitive or delivery of a TR-Abort.ind primitive.

Assumption 6.6 (Aborted Transaction). An aborted transaction in the TR-Service

is any legal sequence de�ned in Table 5.5 that is complete when either:

1. a TR-User has submitted a TR-Abort.req primitive and the peer TR-User has been

noti�ed of it by being delivered a TR-Abort.ind primitive;

2. a TR-User has submitted a TR-Abort.req primitive and the peer TR-User has been

delivered a TR-Abort.ind primitive that was initiated by the TR-Service-Provider;

3. both TR-Users have submitted a TR-Abort.req primitive;

4. both TR-Users have been delivered a TR-Abort.ind primitive that was initiated by

the TR-Service-Provider; or

5. the TR-Init-User has submitted a TR-Invoke.req primitive which is immediately

followed by the submission of a TR-Abort.req primitive by the TR-Init-User, or the

delivery of a TR-Abort.ind primitive by the TR-Service-Provider to the TR-Init-

User, and the TR-Service-Provider has not delivered the TR-Invoke.ind primitive

to the TR-Resp-User.

Assumption 6.7 (TR-Aborts at the TR-Init-User). TR-Abort primitives (TR-

Abort.req and TR-Abort.ind) cannot occur before the TR-Init-User has submitted a TR-

Invoke.req primitive, nor after the TR-Init-User has submitted a TR-Result.res primi-

tive.

Assumption 6.8 (TR-Aborts at the TR-Resp-User). TR-Abort primitives (TR-

Abort.req and TR-Abort.ind) cannot occur before the TR-Resp-User has been delivered

a TR-Invoke.ind primitive, nor after the TR-Resp-User has been delivered the TR-

Result.cnf primitive.

74

6.2 Transaction Service CPN

The objective of modelling the TR-Service using CPNs is to obtain all possible global se-

quences of primitives that constitute a transaction, i.e. the TR-Service language. Ideally,

any formalism that allows sequences to be speci�ed could be used (e.g. regular languages

and expressions, FSA, Backus Naur Form (BNF)). However, it is diÆcult to determine

the sequences a priori, and have con�dence that all sequences have been obtained and

they are indeed correct. Therefore, we use CPNs to model the TR-Service as the TR-

Users communicating in a distributed system. The model allows us to automatically

generate all possible sequences (i.e. obtain a FSA), and to validate that they accurately

represent the behaviour in practice. This section describes the TR-Service CPN. The

approach taken, and structure of the model, is based on a model of the OSI Transport

Service in [13].

6.2.1 Scope of the TR-Service CPN

Only one transaction (from the TR-Init-User's point of view) is modelled by the TR-

Service CPN. In terms of sequences of primitives, most transactions are independent of

each other. Exceptions may occur when the TID space wraps, but, as we discuss in

Chapter 7, it is still suÆcient to consider one transaction.

Reducing the TR-Service CPN to model just one transaction allows us to ignore the

Source and Destination Addresses and Ports in the primitive parameters. Similarly, the

following parameters are not modelled:

� User Data is the data submitted to WTP for transmission. The content is not

manipulated or used in WTP. Similarly for Exit Info, which is data intended only

for the user.

� The Class Type is always 2 for our CPN models.

� The Handle is used by the higher layer to identify the transaction. Again, consid-

ering only one transaction, this has no e�ect on the primitive sequences.

� The Abort Code indicates the reason for aborting. Within one transaction, no

further action is taken based on the reason for an abort.

The only parameter modelled is Ack-Type in the TR-Invoke.req and TR-Invoke.ind

primitives. Section 6.2.4 describes how this is done. The remainder of the infor-

mation conveyed to the peer TR-User by the primitive and its parameters (e.g. TR-

Invoke.reqfSrcAdr,DestAdr,. . . g) can be modelled as a message (e.g. Invoke). This is

also described in Section 6.2.4.

75

The assumptions given in Section 6.1 are also used in creating the CPN model of the

TR-Service. Recall that Assumptions 6.3 and 6.1 are not used|they are overwritten by

Assumptions 6.4 and 6.5, respectively.

6.2.2 Structure of the TR-Service CPN

Figure 6.7 shows the hierarchy page of the TR-Service CPN. There are four other pages

in the model: the declarations (Section 6.2.3), the CPN pages InvokeResult and Abort

(Section 6.2), and Standard ML code for analysing the state space (discussed in Sec-

tion 6.3).

InvokeResult#1

M Prime

Hierarchy#10 Abort#2

M Prime

Declare#3 Analysis#4

Figure 6.7: Hierarchy page for the TR-Service CPN

The model is divided into two CPN pages: InvokeResult models the basic behaviour

of the TR-Service (i.e. the TR-Invoke and TR-Result primitives); and Abort models the

TR-Abort primitives. This structure is to improve clarity of the model (rather than

having all 14 transitions on one page). The pages are connected by fusion places. This

structure has been chosen because we believe it is the clearest approach for our purpose

of modelling the TR-Service, namely generating the global sequences of primitives. A

top-level CPN page may show how the pages are related, but would add no bene�t in

showing the sequences of primitives, and hence, is omitted.

6.2.3 Declarations

The declarations for the TR-Service CPN are given in Listing 6.1.

Listing 6.1: Declarations for the TR-Service CPN

1 color Istate = with Uinvoke j Pinvokeack j Presult j Uresultack j Icomplete ;

2 color Rstate = with Pinvoke j Uinvokeack j Uresult j Presultack j Rcomplete;

3 color Message = with Invoke j Result j Ack j NoAck j Abort;
4 color UserAck = with On j O�;
5 var i : Istate ;

6 var r : Rstate;

7 var u : UserAck;

There are four types used in the CPN. Istate and Rstate de�ne the state of the inter-

faces between the TR-User and the TR-Service-Provider at the initiating and respond-

ing sides. Message de�nes the messages that are used for communication within the

TR-Service-Provider. UserAck de�nes the parameter Ack-Type used in the TR-Invoke

primitive for determining whether UserAck is On or O�. The variables i and r are used

to non-deterministically select states. The variable u is used to specify the value of the

76

UserAck parameter. Further details on the declarations will become apparent when the

CPN model is described.

6.2.4 Page Structure

The pages in the TR-Service CPN model have similar structures. The InvokeResult page,

given in Figure 6.8, is used to illustrate this structure. There are:

TR-Invoke.req
IREQ

TR-Result.ind
RIND

[i=Presult orelse
(i=Pinvokeack
 andalso
 u=Off)]

Initiator

Istate

Uinvoke

FG

InitToResp

Message

FG

RespToInit

Message

FG

NoAck

Responder

Rstate

Pinvoke

FG

TR-Result.req
rreq

[r=Uresult orelse
(r=Uinvokeack
 andalso
 u=Off)]

TR-Invoke.res
ires

TR-Invoke.cnf
ICNF

TR-Result.cnf
rcnf

TR-Result.res
RRES

TR-Invoke.ind
iind

AckType

UserAck

Uinvoke Invoke

Uresultack

1‘Result++
1‘NoAck Result Presultack

Invoke Uinvokeack

UinvokeackAckAckPresult

Uresultack
Ack

Ack

Rcomplete

Pinvokeack

Icomplete

i

Pinvokeack

Pinvoke

Presultack

r

Uresult

u u

NoAck NoAck

u

Figure 6.8: InvokeResult page for TR-Service CPN

� Two fusion places called Initiator and Responder that control the sequences of prim-

itives at the interface between the TR-User and the TR-Service-Provider. The

marking of these places can be thought of as the state of the interface. The Initiator

and Responder places are typed by the colour sets Istate and Rstate, respectively.

Table 6.1 lists the signi�cance of each state. In general, the names of the states in-

dicate which entity a message is expected from (U for TR-User or P for TR-Service-

Provider), and the type of message (e.g. invoke, result, or acknowledgment). The

two exceptions are Icomplete and Rcomplete that indicate the sequence is complete

at the Initiator or Responder interface, respectively.

� Two fusion places called InitToResp and RespToInit representing the TR-Service-

Provider storage. These places are typed by the colour set Message.

� Transitions that represent the submitting and delivering of di�erent primitives from

and to a TR-User. These are referred to as primitive transitions. The primitive

names are given as the labels inside the transitions. The transition names are

mnemonics given in bold face below the transitions. They follow the conventions

used in [13]. The �rst letter in the mnemonic is the �rst letter of the primitive name

(invoke, result, abort). The following three letters indicate the primitive type (req,

77

State Side Signi�cance

Uinvoke Initiator Waiting on the TR-Init-User to submit an invoke
(TR-Invoke.req).

Pinvokeack Initiator Waiting on the TR-Service-Provider to deliver an
acknowledgment of the invoke (TR-Invoke.cnf). If
UserAck is O�, the delivery of the result is
also acceptable (TR-Result.ind).

Presult Initiator Waiting on the TR-Service-Provider to deliver
the result (TR-Result.ind).

Uresultack Initiator Waiting on the TR-Init-User to submit an
acknowledgment of the result (TR-Result.res).

Icomplete Initiator The transaction primitive sequence is complete
from the TR-Init-User's point of view.

Pinvoke Responder Waiting on the TR-Service-Provider to deliver
an invoke (TR-Invoke.ind).

Uinvokeack Responder Waiting on the TR-Resp-User to submit an
acknowledgment of the invoke (TR-Invoke.res). If
UserAck is O�, the submission of the result is
also acceptable (TR-Result.req).

Uresult Responder Waiting on the TR-Resp-User to submit the result
(TR-Result.req).

Presultack Responder Waiting on the TR-Service-Provider to deliver an
acknowledgment of the result (TR-Result.cnf).

Rcomplete Responder The transaction primitive sequence is complete
from the TR-Resp-User's point of view.

Table 6.1: Signi�cance of interface states in the TR-Service CPN

ind, res, cnf). The mnemonics of the primitives seen by the TR-Init-User are

in uppercase, while those seen by the TR-Resp-User are in lowercase. Table 6.2

gives the signi�cance of each transition, including those on the Abort page which is

described in Section 6.2.6. The guards on some of the transitions will be discussed

in Sections 6.2.5 and 6.2.6.

� Arcs from the interface places (Initiator and Responder) to the transitions, with

inscriptions specifying the required state of the interface for the transition to occur.

� Arcs from the transitions to the interface places, with inscriptions specifying the

next state of the interface after the transition occurs.

� Arcs between the transitions and TR-Service-Provider places (InitToResp and Re-

spToInit), with inscriptions specifying the information to be transferred via the

TR-Service-Provider. The information is that which is conveyed by the service

primitive and its parameters, and is referred to as a message. Input arcs to the TR-

Service-Provider places show the message that is stored by the TR-Service-Provider.

Output arcs show the message that is delivered by the TR-Service-Provider to the

TR-User. The two arcs inscribed with NoAck are discussed in Section 6.2.5. Ta-

ble 6.3 gives the signi�cance of each message.

� A place called AckType (on the InvokeResult page only) that models the TR-Invoke

78

Transition Primitive Type Signi�cance

IREQ TR-Invoke.req Invoke request submitted by the TR-Init-User
iind TR-Invoke.ind Invoke indication delivered to the TR-Resp-User
ires TR-Invoke.res Invoke response submitted by the TR-Resp-User
ICNF TR-Invoke.cnf Invoke con�rm delivered to the TR-Init-User
rreq TR-Result.req Result request submitted by the TR-Resp-User
RIND TR-Result.ind Result indication delivered to the TR-Init-User
RRES TR-Result.res Result response submitted by the TR-Init-User
rcnf TR-Result.cnf Result con�rm delivered to the TR-Resp-User
AREQ TR-Abort.req Abort request submitted by the TR-Init-User
AINDP TR-Abort.ind TR-Service-Provider initiated Abort indication

delivered to the TR-Init-User
AIND TR-Abort.ind TR-Resp-User initiated Abort indication

delivered to the TR-Init-User
areq TR-Abort.req Abort request submitted by the TR-Resp-User
aindp TR-Abort.ind TR-Service-Provider initiated Abort indication

delivered to the TR-Resp-User
aind TR-Abort.ind TR-Init-User initiated Abort indication

delivered to the TR-Resp-User

Table 6.2: Signi�cance of transitions in the TR-Service CPN

Message Signi�cance

Invoke Communicates the TR-Invoke.req parameters from the initiating side
to the responding side.

Result Communicates the TR-Result.req parameters from the responding side
to the initiating side.

Ack Communicates the TR-Invoke.res parameters from the responding side
to the initiating side, and communicates the TR-Result.res
parameters from the initiating side to the responding side.

Abort Communicates the TR-Abort.req parameters between the two sides of
the TR-Service-Provider.

Table 6.3: Signi�cance of TR-Service-Provider messages in the TR-Service CPN

79

parameter AckType. AckType is typed by the UserAck colour set|it can be marked

with an On token or an O� token. The AckType parameter is set in the TR-

Invoke.req primitive by the TR-Init-User and noti�ed to the TR-Resp-User in the

TR-Invoke.ind primitive. The AckType (UserAck On or UserAck O�) remains the

same for the complete transaction. Rather than modelling the parameter being

passed from the TR-Init-User to the TR-Resp-User, we use the place AckType,

which has global signi�cance, to indicate the status of UserAck. Where transitions

depend on the status of UserAck, there is an arc from AckType to that transition.

AckType is marked with either an On or O� token when IREQ occurs. In the analysis

we deal with the UserAck On and O� cases separately. Therefore, we change the

inscription of the arc from IREQ to AckType to either On or O�, depending on the

scenario we are interested in.

The CPN has an initial marking of:

� Initiator: 1`Uinvoke

� Responder: 1`Pinvoke

� InitToResp: the empty multi-set

� RespToInit: 1`NoAck

� AckType: the empty multi-set

The marking of RespToInit is explained in Section 6.2.5 which describes the InvokeRe-

sult page. The Abort page is described in Section 6.2.6. We assume UserAck is O� (i.e.

the arc inscription from IREQ into AckType is O�, not u). The di�erences when UserAck

is On will be noted.

6.2.5 InvokeResult Page

The InvokeResult page models the TR-Invoke and TR-Result primitives (Figure 6.8). The

TR-Invoke primitives are modelled by the four outer transitions (referred to as TR-Invoke

transitions) and the TR-Result primitives are modelled by the four inner transitions

(referred to as TR-Result transitions). In the initial marking, IREQ is the only transition

enabled (Initiator is marked with Uinvoke). On the occurrence of IREQ the interface enters

the Pinvokeack state, and an Invoke message is added to InitToResp. The place AckType is

also marked with 1`O�. The transition iind is now enabled because Responder is marked

with a Pinvoke token and InitToResp is marked with an Invoke token. After the occurrence

of iind, Responder is marked with Uinvokeack.

80

With UserAck O�, the TR-Resp-User can either submit a TR-Invoke.res primitive or a

TR-Result.req primitive after being delivered a TR-Invoke.ind primitive. When UserAck

is On however, a TR-Result.req primitive cannot be submitted by the TR-Resp-User

before the TR-Invoke.res primitive has been submitted. This di�erence in behaviour is

modelled using the place AckType and the guard on transition rreq. If ires occurs �rst,

then rreq is enabled with r bound to Uresult. This is independent of the status of UserAck.

If UserAck is O�, then rreq (r bound to Uinvokeack and u bound to O�) is in conict with

ires. If rreq occurs, then Responder is marked with the token Presultack, disabling ires.

If ires and then rreq occur, then the place RespToInit has the marking 1`Ack++1`Result.

The receipt of these messages at the initiating side is modelled in a similar way to ires

and rreq. ICNF is enabled in the Pinvokeack interface state, and RIND is enabled in the

Presult or (if u is bound to O�) Pinvokeack interface state.

Note that the NoAck is necessary in RespToInit to ensure that if both ires and rreq

have occurred, then ICNF must occur before RIND. That is, RIND can only occur if there

is a Result token in RespToInit, but no Ack token. We model the absence of Ack by NoAck.

After the RIND transition has occurred, the only transition enabled (for both UserAck

On and O�) is RRES. The occurrence of RRES deposits an Ack in InitToResp. This enables

rcnf. TR-Result.cnf is the �nal transition on the InvokeResult page that can occur, after

which the Initiator place is marked with a Icomplete token and the Responder place is

marked with a Rcomplete token.

When UserAck is O� a transaction can also be successfully completed after the TR-

Init-User has received the TR-Result.ind primitive (Assumption 6.4). The completion

of this sequence is not modelled explicitly in the CPN (i.e. the interface states do not

become Icomplete and Rcomplete), but is considered in the FSA analysis. This is discussed

further in Section 6.3.

6.2.6 Abort Page

The TR-Abort primitives are modelled on the Abort page (Figure 6.9). There are six

transitions (referred to as TR-Abort transitions), all with input arcs from the interface

places (Initiator and Responder) inscribed with the variable i or r. The two transitions

AINDP and aindp have a �fth letter (p) in their name to indicate the TR-Abort.ind

primitive is only initiated by the TR-Service-Provider. Each of the variables i and r can

be bound to any token in the colour set of its type (Istate or Rstate). The enabling of the

transitions are however restricted by guards. At the initiating side, the guards specify the

TR-Abort transitions are not enabled when the interface is in the Uinvoke or Icomplete

states. Similarly, at the responding side, the TR-Abort transitions are not enabled in the

Pinvoke and Rcomplete states. This means a TR-Abort transition cannot occur before the

81

transaction has begun (TR-Invoke.req submitted by the TR-Init-User or TR-Invoke.ind

delivered to the TR-Resp-User), nor after the transaction has been aborted or successfully

completed (TR-Result.res submitted by the TR-Init-User or TR-Result.cnf delivered to

the TR-Resp-User). This corresponds with Assumptions 6.7 and 6.8.

TR-Abort.req
AREQ

[i<>Uinvoke andalso
i<>Icomplete]

TR-Abort.ind
AINDP

[i<>Uinvoke andalso
i<>Icomplete]

Initiator

Istate

Uinvoke

FG

InitToResp

Message

FG

RespToInit

Message

FG

NoAck

Responder

Rstate

Pinvoke

FG

TR-Abort.req
areq

[r<>Pinvoke andalso
r<>Rcomplete]

TR-Abort.ind
AIND

[i<>Uinvoke andalso
i<>Icomplete]

TR-Abort.ind
aindp

[r<>Pinvoke andalso
r<>Rcomplete]

TR-Abort.ind
aind

[r<>Pinvoke andalso
r<>Rcomplete]i Abort

Icomplete

Abort Rcomplete

rAbortAbortIcomplete

Rcomplete

Icomplete

i

i

r

r

Rcomplete

Figure 6.9: Abort page in TR-Service CPN

The TR-Abort transitions are symmetrical. Therefore, we only describe the TR-Abort

transitions on the initiating side.

The TR-Init-User can submit a TR-Abort.req primitive when a transaction is in

progress. This is modelled by the transition AREQ, which delivers an Abort message

to the TR-Service-Provider (place InitToResp). After the TR-Init-User has aborted, the

transaction is complete (from the TR-Init-User's point of view) and the interface enters

the Icomplete state.

The TR-Init-User can be delivered a TR-Abort.ind primitive (transition AIND) as a

result of the TR-Resp-User submitting a TR-Abort.req primitive which creates an Abort

message in RespToInit. The Abort message enables AIND, and on its occurrence the TR-

Abort.ind primitive is delivered to the TR-Init-User. The interface enters the Icomplete

state indicating the completion of the transaction.

Finally, the TR-Service-Provider can initiate an abort, delivering a TR-Abort.ind

primitive to the TR-Init-User. This is modelled by the transition AINDP. After the TR-

Abort.ind primitive is delivered to the TR-Init-User, the interface enters the Icomplete

state indicating the completion of the transaction.

82

6.3 Transaction Service Analysis

The TR-Service CPN has been analysed using the methodology outlined in Section 3.3.

In this section we present the state space and language analysis results.

6.3.1 State Space Analysis

State space analysis of the TR-Service CPN was performed separately for the UserAck O�

and UserAck On scenarios. We chose to separate the scenarios so the TR-Protocol could

be compared to each individually. That is, separate state spaces for the TR-Protocol

when UserAck is O� and On are also calculated. This reduced the state space size for

the TR-Protocol CPN (Chapter 7). Table 6.4 gives the statistics for each TR-Service

state space. Design/CPN reports are included in Appendix C.

UserAck Nodes Arcs Terminal Markings

O� 60 129 22
On 57 114 22

Table 6.4: State space statistics for the TR-Service CPN

The terminal markings for the two state spaces are shown in Figures 6.10 and 6.11.

The multiple terminal markings are comprised of di�erent combinations of the markings

of places InitToResp and RespToInit. The markings are a result of di�erent sequences of

primitives leading to the completion of a transaction. For example, if both TR-Users

submit TR-Abort.req primitives, then the transaction is complete, but Abort messages

remain in the places InitToResp and RespToInit. However, if the Abort message was

received from InitToResp and a TR-Abort.ind primitive delivered to the TR-Resp-User,

then the places InitToResp and RespToInit would be empty. Although the many di�erent

terminal markings result in a cumbersome state space, the language analysis does not

depend on the speci�c markings, and therefore the results will be more compact.

6.3.2 Language Analysis

The TR-Service state space was treated as a FSA to obtain the TR-Service language.

The process described in Chapter 4 is used. The �rst step involves mapping binding

elements in the Design/CPN state space to the alphabet of the language. The functions

that performs the mapping are given in Listing 6.2.

The function be2str() takes a binding element as input and returns an integer1. The

binding elements in the TR-Service CPN represent service primitives. Each primitive is

mapped to the integer according to Table 6.5. Note that the TR-Abort primitives at

1The integer is given in Standard ML string format so that is can be printed to a �le.

83

60
2:0

60
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Result++ 1‘Ack++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

59
4:0

59
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Result++ 1‘Ack
Responder: 1‘Rcomplete
AckType: 1‘Off

58
2:0

58
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Result++ 1‘Ack
Responder: 1‘Rcomplete
AckType: 1‘Off

57
2:0

57
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Result++ 1‘Ack++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

54
2:0

54
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

53
2:0

53
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: empty
Responder: 1‘Rcomplete
AckType: 1‘Off

52
2:0

52
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

51
2:0

51
Initiator: 1‘Icomplete
InitToResp: 1‘Ack
RespToInit: empty
Responder: 1‘Rcomplete
AckType: 1‘Off

50
2:0

50
Initiator: 1‘Icomplete
InitToResp: 1‘Ack
RespToInit: 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

49
5:0

49
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: empty
Responder: 1‘Rcomplete
AckType: 1‘Off

48
2:0

48
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Ack++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

47
4:0

47
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Ack
Responder: 1‘Rcomplete
AckType: 1‘Off

46
2:0

46
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Ack
Responder: 1‘Rcomplete
AckType: 1‘Off

45
2:0

45
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Ack++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

35
3:0

35
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Result++ 1‘NoAck++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

34
6:0

34
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Result++ 1‘NoAck
Responder: 1‘Rcomplete
AckType: 1‘Off

33
3:0

33
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Result++ 1‘NoAck
Responder: 1‘Rcomplete
AckType: 1‘Off

32
3:0

32
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Result++ 1‘NoAck++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

26
4:0

26
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘NoAck++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

25
8:0

25
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘NoAck
Responder: 1‘Rcomplete
AckType: 1‘Off

24
4:0

24
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘NoAck
Responder: 1‘Rcomplete
AckType: 1‘Off

23
4:0

23
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘NoAck++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘Off

Figure 6.10: Terminal markings for TR-Service CPN with UserAck O�

84

57
2:0

57
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

56
2:0

56
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: empty
Responder: 1‘Rcomplete
AckType: 1‘On

55
2:0

55
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

54
2:0

54
Initiator: 1‘Icomplete
InitToResp: 1‘Ack
RespToInit: empty
Responder: 1‘Rcomplete
AckType: 1‘On

53
2:0

53
Initiator: 1‘Icomplete
InitToResp: 1‘Ack
RespToInit: 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

52
5:0

52
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: empty
Responder: 1‘Rcomplete
AckType: 1‘On

51
2:0

51
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Result++ 1‘NoAck++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

50
4:0

50
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Result++ 1‘NoAck
Responder: 1‘Rcomplete
AckType: 1‘On

49
2:0

49
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Result++ 1‘NoAck
Responder: 1‘Rcomplete
AckType: 1‘On

48
2:0

48
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Result++ 1‘NoAck++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

42
2:0

42
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Result++ 1‘Ack++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

41
4:0

41
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Result++ 1‘Ack
Responder: 1‘Rcomplete
AckType: 1‘On

40
2:0

40
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Result++ 1‘Ack
Responder: 1‘Rcomplete
AckType: 1‘On

39
2:0

39
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Result++ 1‘Ack++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

33
2:0

33
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Ack++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

32
4:0

32
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘Ack
Responder: 1‘Rcomplete
AckType: 1‘On

31
2:0

31
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Ack
Responder: 1‘Rcomplete
AckType: 1‘On

30
2:0

30
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘Ack++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

20
4:0

20
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘NoAck++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

19
8:0

19
Initiator: 1‘Icomplete
InitToResp: empty
RespToInit: 1‘NoAck
Responder: 1‘Rcomplete
AckType: 1‘On

18
4:0

18
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘NoAck
Responder: 1‘Rcomplete
AckType: 1‘On

17
4:0

17
Initiator: 1‘Icomplete
InitToResp: 1‘Abort
RespToInit: 1‘NoAck++ 1‘Abort
Responder: 1‘Rcomplete
AckType: 1‘On

Figure 6.11: Terminal markings for TR-Service CPN with UserAck On

85

Listing 6.2: Mapping function used in the TR-Service

1 fun be2str (Bind. InvokeResult 'IREQ (1,)) = "1"

2 j be2str (Bind. InvokeResult ' iind (1,)) = "2"

3 j be2str (Bind. InvokeResult ' ires (1,)) = "3"

4 j be2str (Bind. InvokeResult 'ICNF (1,)) = "4"

5 j be2str (Bind. InvokeResult ' rreq (1,)) = "5"

6 j be2str (Bind. InvokeResult 'RIND (1,)) = "6"

7 j be2str (Bind. InvokeResult 'RRES (1,)) = "7"

8 j be2str (Bind. InvokeResult ' rcnf (1,)) = "8"

9 j be2str (Bind.Abort'AREQ (1,)) = "9"

10 j be2str (Bind.Abort'areq (1,)) = "10"

11 j be2str (Bind.Abort'AIND (1,)) = "11"

12 j be2str (Bind.Abort'aind (1,)) = "12"

13 j be2str (Bind.Abort'AINDP (1,)) = "11"

14 j be2str (Bind.Abort'aindp (1,)) = "12"

15 j be2str () = "ERROR";

16

17 fun ArcToFSM a = be2str(ArcToBE(a));

18

19 fun FindHalts n =

20 (((Mark.InvokeResult' Initiator 1 n) == 1`Icomplete) andalso

21 ((Mark.InvokeResult'Responder 1 n) == 1`Pinvoke))

22 orelse

23 (((Mark.InvokeResult' Initiator 1 n) == 1`Icomplete) andalso

24 ((Mark.InvokeResult'Responder 1 n) == 1`Rcomplete))

25 orelse

26 (((Mark.InvokeResult' Initiator 1 n) == 1`Uresultack) andalso

27 ((Mark.InvokeResult'Responder 1 n) == 1`Presultack) andalso

28 ((Mark.InvokeResult'AckType 1 n) == 1`O�))

29 orelse

30 (((Mark.InvokeResult' Initiator 1 n) == 1`Uresultack) andalso

31 ((Mark.InvokeResult'Responder 1 n) == 1`Rcomplete) andalso

32 ((Mark.InvokeResult'AckType 1 n) == 1`O�));

86

the initiating side correspond to di�erent integers than the TR-Abort primitives at the

responding sides.

Service Primitive TR-User Number

TR-Invoke.req TR-Init-User 1
TR-Invoke.ind TR-Resp-User 2
TR-Invoke.res TR-Resp-User 3
TR-Invoke.cnf TR-Init-User 4
TR-Result.req TR-Resp-User 5
TR-Result.ind TR-Init-User 6
TR-Result.res TR-Init-User 7
TR-Result.cnf TR-Resp-User 8
TR-Abort.req TR-Init-User 9
TR-Abort.req TR-Resp-User 10
TR-Abort.ind TR-Init-User 11
TR-Abort.ind TR-Resp-User 12

Table 6.5: Correspondence of service primitives to numbers in the FSA

A FSA must contain at least one halt state, which de�nes the end of a sequence.

A halt state may or may not lead to other states. When treating the state space as a

FSA, all the terminal markings correspond to halt states. We introduce additional halt

states to include the sequences that complete before a dead marking in the state space

is reached. Nodes in the state space are de�ned as halt states if they satisfy any of the

following conditions:

1. M(Initiator) = 1`Icomplete and M(Responder) = 1`Pinvoke: A TR-Invoke.req primi-

tive is immediately followed by a TR-Abort.req or TR-Abort.ind (at the initiating

side interface). This corresponds to Item 5 in Assumption 6.6.

2. M(Initiator) = 1`Icomplete and M(Responder) = 1`Rcomplete: A transaction has

been successfully completed or aborted. The successful transaction corresponds

with Items 1 and 3 of Assumption 6.4 when UserAck is O�, and Assumption 6.5

when UserAck is On. The aborted transaction corresponds to Items 1 to 4 of

Assumption 6.6.

3. M(Initiator) = 1`Uresultack and M(Responder) = 1`Presultack and M(AckType) =

1`O�: With UserAck O�, a transaction has been successfully completed, without

the TR-Init-User acknowledging the result. This corresponds to Item 2 of Assump-

tion 6.4.

4. M(Initiator) = 1`Uresultack and M(Responder) = 1`Rcomplete and M(AckType) =

1`O�: With UserAck O�, a transaction has been successfully completed, without

the TR-Init-User acknowledging the result, but with a TR-Abort primitive occur-

ring at the TR-Resp-User. This corresponds to Item 4 of Assumption 6.4.

87

The minimized FSA for the UserAck O� and UserAck On state spaces are shown in

Figures 6.12 and 6.13, respectively. The convention of double circle halt states is used [9].

The FSA and language statistics are given in Table 6.6. Each language has two sequences

that have a length of 2: TR-Invoke.req followed by TR-Abort.req (by TR-Init-User); and

TR-Invoke.req followed by TR-Abort.ind (to TR-Init-User). The longest sequences are

of length 8. Closer investigation of the languages reveals the language with UserAck On

is a subset of the UserAck O� language. This is expected because when UserAck is On,

the TR-Users must acknowledge the invocation and result. When UserAck is O�, the

TR-Users may either send acknowledgments or not send acknowledgments.

0 1
IREQ

2
iind

3
AREQ

AIND

4

ires

5
rreq

6

AREQ

AIND

7

areq

aind

iind

8ICNF

9

rreq

10AREQ

AIND

11

areq

aind

12RIND

13

AREQ

AIND

14

areq

aind

ires

rreq

18

areq

aind

AREQ

AIND

rreq

areq

aind

AREQ

AIND

ICNF

AREQ

AIND

15

areq

aind

rreq

areq

aind

ICNF

AREQ

AIND

AREQ

AIND

16

RRES

17

areq

aind

areq

aind

AREQ

AIND

RIND

ICNF

AREQ

AIND

rcnf

areq

aind

RRES

AREQ

AIND

Figure 6.12: FSA of the TR-Service CPN with UserAck O�

88

0 1
IREQ

2
iind

3

AREQ

AIND

4ires

5

AREQ

AIND

6
areq

aind

iind

7

ICNF

8
rreq

9

AREQ

AIND

10areq

aind

ires

18

areq

aind

AREQ

AINDareq

aind

AREQ

AIND

11

rreq

ICNF

12

AREQ

AIND

13

areq

aind

areq

aind

rreq

ICNF

AREQ

AIND

AREQ

AIND

14
RIND

15

areq

aind

areq

aind

AREQ

AIND

ICNF

AREQ

AIND

16

RRES

17
areq

aind

AREQ

AIND

RIND

rcnf

areq

aind

RRES

AREQ

AIND

Figure 6.13: FSA of the TR-Service CPN with UserAck On

UserAck Nodes Arcs Halts Sequences Longest Shortest

O� 19 63 4 182 8 2
On 19 61 2 130 8 2

Table 6.6: Statistics for both TR-Service languages

89

6.4 Summary

The TR-Service in the WTP Speci�cation [183] comprises the de�nition of the primitives

and their parameters, and the set of possible primitive sequences as seen by both TR-

Users. We have shown in this Chapter that the TR-Service de�nition in the WTP

Speci�cation inadequately describes the primitive sequences. We have presented a set

of assumptions that we make about the TR-Service so that an unambiguous and (we

believe) correct de�nition is obtained. In Section 6.2, a CPN model of the TR-Service

is given, which formalizes the de�nition of the TR-Service. Section 6.3 has shown the

results from analysing the CPN model. The FSAs of the TR-Service with UserAck On

(Figure 6.13) and O� (Figure 6.12) give the set of possible global primitive sequences.

The main limitation of the TR-Service de�nition in the WTP Speci�cation is that the

primitive sequence table (Table 5.5) only describes the sequences from the point of view

of one TR-User. The lack of information on the global sequences (e.g. what constitutes

the end of a transaction, when can aborts occur?) allows di�erent interpretations of the

TR-Service to be made. In Section 6.1, we have made assumptions about the end-to-end

behaviour of the TR-Service and the de�nition of successful and aborted transactions

(including when aborts can occur). These assumptions are based on the TR-Service

given in the WTP Speci�cation, the behaviour of the TR-Protocol, existing conventions

for de�ning services (e.g. [79]), and our understanding of the purpose of the Transaction

layer in the WAP architecture.

A CPN model of the TR-Service has been created. The objective of the CPN mod-

elling was to generate the set of possible primitive sequences, and so, with this in mind,

several assumptions about the primitive parameters were made to simplify the CPN. The

CPN uses transitions to represent primitives being submitted by, or delivered to, the TR-

User. Therefore, the state spaces for the two initial markings of the CPN model (UserAck

On and UserAck O�) gave all possible sequences of the primitives. By treating the state

space as a FSA, using the assumptions about successful and aborted transactions to de-

�ne halt states, and then minimizing that FSA, the canonical set of possible primitive

sequences, or the TR-Service language, was obtained. The FSA of the TR-Service with

UserAck O� (Figure 6.12) has 19 nodes and 63 arcs, giving a language with 182 di�erent

sequences of primitives. With UserAck On there are 19 nodes, 61 arcs and 130 sequences

of primitives (Figure 6.13). The FSAs are an integral part of the remaining veri�cation

steps. In the next chapter, the Transaction Protocol will be modelled using CPNs. In

Chapter 8 the TR-Protocol FSAs, obtained from the analysis of the CPN, will be com-

pared with the TR-Service FSAs to determine if the TR-Protocol provides the de�ned

TR-Service.

90

Chapter 7

Transaction Protocol CPN

The Transaction Protocol [183] (TR-Protocol) described in Chapter 5 gives details of

the procedures the two protocol entities, Initiator and Responder, use to communicate

with each other. This should implement the Transaction Service (TR-Service) given in

Chapter 6. This chapter presents the CPN model of the TR-Protocol.

The CPN modelling and analysis of the TR-Protocol, like the TR-Service, went

through several iterations. Firstly, we created an initial CPN that was based mainly

on the state tables in the WTP Speci�cation [183]. Analysis of this initial CPN revealed

inconsistencies between the TR-Protocol and TR-Service. The TR-Protocol CPN was

modi�ed and then analysed again. This process was repeated until we arrived at a �nal

model of the protocol (called the Revised TR-Protocol) where no errors were present.

This chapter presents the initial TR-Protocol CPN (with several modi�cations). Chap-

ter 8 presents the analysis of, and changes to, this initial CPN that led to the Revised

TR-Protocol CPN. Chapter 9 presents a detailed analysis of the Revised TR-Protocol

CPN.

The modi�cations included in the TR-Protocol CPN presented in this Chapter are a

result of errors found in the protocol from analysing previous CPN models. However, we

present them up-front in this chapter (as opposed to presenting the initial TR-Protocol

CPN and then the analysis results) to save space and because the errors and solutions,

once identi�ed using the CPN model, are easily described by examining the state tables.

Other errors, with more involved solutions, are presented in Chapter 8 where the analysis

results are used in the explanations.

The TR-Protocol CPN presented in this chapter is an updated version of that given

in [56]. Improvements have been made to produce a simpler and clearer model that

better reects the WTP Speci�cation. The main change is the current TR-Protocol CPN

models just one transaction, whereas the TR-Protocol CPN in [56] modelled multiple

transactions. We have generalized the TID veri�cation procedure, allowing the removal of

the speci�c caching mechanism. The counter AEC is also modelled non-deterministically,

91

signi�cantly reducing the number of con�gurations to be analysed. Chapter 8 discusses

how the results obtained in [56], which were submitted to the WAP Forum [55], di�er

from the analysis of the current TR-Protocol CPN.

This chapter begins by giving an overview of the TR-Protocol structure in Section 7.1.

Section 7.2 lists the scope and assumptions of the TR-Protocol CPN. Also included are the

errors in the TR-Protocol that this CPN has �xed. Section 7.3 describes the hierarchical

structure of the TR-Protocol CPN. The four layers of the TR-Protocol CPN are presented

from highest to lowest in Sections 7.4 to 7.7.

The model of the Transaction Protocol, especially its scope and the assumptions,

has bene�ted from discussions with Professor Jonathan Billington. The approach to

modelling the aborted transactions for which the Responder is not aware the transaction

has started (Section 7.6.3) is partly due to Professor Billington.

7.1 Structure of the Transaction Protocol

The TR-Service in Chapter 6 is de�ned by the primitives and their parameters, and the

set of possible primitive sequences between the TR-Users and the TR-Service-Provider.

Figure 6.1 shows a simple model of the TR-Service. The TR-Protocol is a re�nement of

the TR-Service. It de�nes the procedures of the two protocol entities (TR-PEs), Initiator

(TR-Init-PE) and Responder (TR-Resp-PE), for providing the TR-Service to the TR-

Users. Figure 7.1 shows the model of the TR-Protocol and its relationship with the

TR-Users and the Transport Service Provider (T-Service-Provider).

TR-Invoke.cnf
TR-Result.ind
TR-Abort.ind TR-Abort.req

TR-Result.req
TR-Invoke.res

User
Responder

User
Initiator

TR-Invoke.req
TR-Result.res
TR-Abort.req

TR-Invoke.ind
TR-Result.cnf
TR-Abort.ind

Protocol Entity

Transport Service Provider

Initiator Responder
Protocol Entity

T-DUnitdata.reqT-DUnitdata.req

Result, Ack, Abort

Invoke, Ack, Abort

T-DUnitdata.ind
T-DError.ind

T-DUnitdata.ind
T-DError.ind

Figure 7.1: Block diagram of the TR-Protocol

The TR-Service primitives are submitted by, or delivered to, the TR-Users. For clar-

ity, the primitive parameters are omitted from Figure 7.1. The TR-Init-PE and TR-Resp-

92

PE use the primitives of the Transport Service (e.g. T-DUnitData.req) to send and receive

PDUs (Invoke, Ack, Result and Abort). In the WAP architecture, the Transport Service

is provided by WDP [179]. The Transport Service primitives are T-DUnitData (with a

request and indication type) and T-DError (with an indication type). T-DUnitData is

used to deliver data (in the TR-Protocols case, the four PDUs) between the users. The

T-DError primitive is only used when the T-Service-Provider initiates an abort. The

following section scopes the TR-Protocol features and components of Figure 7.1 to be

modelled and lists the assumptions made in the modelling process.

7.2 Scope and Assumptions of the TR-Protocol CPN

The aim of creating the TR-Protocol CPN is to verify the design of the TR-Protocol.

For the veri�cation to be successful, we must ensure the TR-Protocol CPN is a valid

representation of the TR-Protocol and that our analysis tools and techniques can cope

with the veri�cation. Another minor requirement is that the TR-Protocol CPN should

be easy to maintain to reect changes in the TR-Protocol. With these objectives in mind,

we limit parts of the TR-Protocol that are modelled by the CPN. Note that we are not

interested in the performance aspects of the TR-Protocol, only its functional behaviour.

Section 7.2.1 de�nes the scope of our TR-Protocol CPN. This comprises a set of

limitations that we impose so that our objectives can be met. Either the limitations may

have an impact on the analysis results (in which case they are referred to as restrictions),

or the results are independent of them (called simpli�cations).

Section 7.2.2 gives the assumptions made when modelling the TR-Protocol. The

assumptions are necessary when the description of the TR-Protocol in the WTP Speci�-

cation is ambiguous or incomplete. Therefore, the assumptions are also related to errors

found in the WTP Speci�cation.

7.2.1 Scope of the TR-Protocol CPN

Con�guration of TR-Users

The �rst restriction we introduce limits the investigation to Transaction Class 2 of the

TR-Protocol in the WTP Speci�cation [183]:

Restriction 7.1 (Transaction Class 2). Only Class 2 Transactions and version 1.2.1

(as described in [183]) are modelled.

A consequence of Restriction 7.1 is that the TCL and Version header �elds (see Sec-

tion 5.3.2) are not modelled.

93

Transactions take place between a TR-Init-User and TR-Resp-User. Each transaction

is identi�ed by the address of the device TR-Users are operating on, and the port of the

TR-Users' application (see Section 5.2.2). In addition, each TR-Init-PE uses a TID to

identify the transactions outstanding. If the same port is being used by a TR-Init-PE and

TR-Resp-PE, then the destination of PDUs is identi�ed by the highest order bit of the

TID (see Section 5.3.1). There is, however, no interaction between the TR-Init-PE and

TR-Resp-PE using the same port that a�ects their functional behaviour. Therefore, we

can simplify the TR-Protocol CPN in two ways without impacting the analysis results:

Simpli�cation 7.1 (Con�guration of the TR-Users). Transactions occur between

one TR-Init-User and one TR-Resp-User.

Simpli�cation 7.2 (Direction of PDUs). The highest order bit in the TID �eld of

PDU headers is not modelled because there is no interaction between a TR-Init-PE and

TR-Resp-PE using the same port.

From Figure 7.1 the TR-Service primitives submitted by and delivered to the TR-

Users must be modelled. However, most of the parameters of the primitives may be

omitted from the TR-Protocol CPN:

Simpli�cation 7.3 (TR-Service Primitive Parameters). For the three TR-Service

primitives (TR-Invoke, TR-Result and TR-Abort), only the Ack-Type parameter in the

TR-Invoke.req primitive is modelled.

Simpli�cation 7.1 means the Source Address, Source Port, Destination Address and

Destination Port do not change and, therefore, are unnecessary in the TR-Protocol CPN.

Similarly for the Class Type, which is always 2. The operation of the TR-Protocol is

independent of the User Data, Handle and Abort Code, therefore they do not need to be

modelled. As we will see in Simpli�cation 7.5, TPIs, which are the sole purpose of Exit

Info, are not modelled.

Multiple Transactions

For the TR-Protocol to operate correctly, multiple transactions between a TR-Init-User

and TR-Resp-User must not interact. Although di�erentiated by the TID, when the TID

numbers wrap, there may be a possibility confusion occurs as to which transactions the

PDUs belong. Figure 7.2 illustrates how the confusion may occur.

The TR-Init-User initiates a transaction using the TID value of 0. The TID value is

incremented by one for each new transaction initiated. The e�ective range of the TIDs

is 0 to 32767 (see the Transaction Identi�er protocol feature in Section 5.3.1). Figure 7.2

shows that an Invoke PDU is sent initiating each transaction. For clarity, the other PDUs

94

TR-Init-PE TR-Resp-PE
T-Service-Provider

Invoke(32767)

Invoke(1)

Invoke(0)

Invoke(0)

Result(0)

32765 transactions

?

Figure 7.2: Example of PDUs with di�erent TID incarnations overlapping

within the transaction are hidden. After the TID value of 32767 is used, the TR-Init-User

re-uses 0, i.e. there is a new incarnation of TID 0. Confusion occurs if PDUs are received

by a TR-PE when two (or more) incarnations of a TID value are in use. In Figure 7.2

the TR-Init-PE has no way to determine which transaction the Result PDU with TID 0

belongs to.

The possibility of confusion of PDUs is a problem encountered by many commu-

nication protocols that use sequence numbers. The solution used by the TR-Protocol

(which is similar to that for other protocols, e.g. T/TCP [20]) is to make the following

assumptions:

1. Each PDU has a maximum lifetime for being in the network (Maximum Packet

Lifetime (MPL)). When this lifetime expires, it is assumed the PDU or any of its

duplicates will have been removed from the network. The value of MPL depends

on the bearer service.

2. The rate the TR-Init-PE can initiate transactions is limited to 214, or 16384, trans-

actions in a time of 2MPL (see Section 5.3.1).

3. The transaction time, (i.e. the time from when the �rst PDU is sent, until the last

PDU is received) is insigni�cant compared to MPL.

If these assumptions hold, then the TR-Protocol guarantees confusion of PDUs will

not occur. Suppose transaction (with TID) 0 is initiated at time 0, followed by 214 � 1

more transactions. As 214 transactions have been initiated, according to the second

assumption, the next transaction cannot be initiated until time 2MPL. After this time, all

PDUs associated with transaction 0 will have been removed from the network. Therefore,

95

there will be no possibility of confusing PDUs of the next incarnation of transaction 0,

with the preceding transaction.

Using the assumptions made in the WTP Speci�cation, we can simplify our model:

Simpli�cation 7.4 (Single Transaction). Only a single transaction is modelled since

there is no interaction between transactions in the TR-Protocol.

Simpli�cation 7.4 is made because our objective is to verify the functional behaviour

of the TR-Protocol. If performance aspects of the TR-Protocol were the main objective,

then investigating the assumptions made about the MPL and transfer rate would be

important. These aspects have, to some extent, been investigated in [19, 20, 149]. For

example, if MPL was assumed to be 2000 seconds (as in [19]), the maximum rate at which

transactions could be initiated by the TR-Init-PE would be approximately 4 per second.

Investigating the transaction rate required by intended applications of the TR-Protocol,

and the appropriate MPL for di�erent bearer services is discussed as an area for future

work in Chapter 10.

Protocol Features

We use an incremental approach to verifying the TR-Protocol. Therefore, only those

features that are representative of the core behaviour of the TR-Protocol are modelled

and analysed. As con�dence is gained in the these features, other features can be included

in the CPN. Chapter 10 elaborates on the features that can be added as a part of future

work. Table 7.1 lists which protocol features have been modelled and which have been

omitted.

Feature Modelled Omitted

Message transfer X
Re-transmission until acknowledgment X
User acknowledgment X
Transaction abort X
Transaction identi�er veri�cation X
Error handling X
Transport information items X
Transmission of parameters X
Information in last acknowledgment X
Asynchronous transactions X
Transaction identi�er X
Version handling X
Segmentation and re-assembly X

Table 7.1: Protocol features modelled or omitted from the TR-Protocol CPN

Simpli�cation 7.5 (Omission of Transport Information Items). Transport Infor-

mation Items are not modelled in the TR-Protocol CPN. This includes the Transmission

of Parameters and Information in Last Acknowledgment features, which use TPIs.

96

TPIs are used to transfer optional information (typically to do with the protocol's

performance) to TR-PEs or TR-Users within existing PDUs. As these existing PDUs

are modelled, and the objective of the analysis is investigating the functional behaviour

(not the performance), TPIs do not have any impact on the core behaviour of the TR-

Protocol. As TPIs are not modelled, the CON header �eld in the PDUs (see Section 5.3.2)

is not modelled.

The Asynchronous Transactions and Transaction Identi�er protocol features are not

modelled because only one transaction is considered (Simpli�cation 7.4).

The Version Handling protocol feature is not modelled because we assume the correct

versions are being used by both TR-PEs (see Restriction 7.1).

Restriction 7.2 (Omission of Segmentation and Re-Assembly). The Segmenta-

tion and Re-assembly (SAR) protocol feature is not modelled in the TR-Protocol CPN.

SAR is an optional feature and, therefore, is not a core part of the TR-Protocol. As

a result of Restriction 7.2, the GTR, TTR and PSN header �elds (see Section 5.3.2) are not

modelled.

Transport Service Provider

The Transport Service is used by the TR-PEs to communicate with each other. (The

optional Security layer only adds security to the Transport Service which is transparent

to the TR-Protocol and, therefore, can be ignored.) The characteristics of the T-Service-

Provider must be known so that an abstract model of it can be created. The WTP

Speci�cation suggests PDUs can be lost (e.g. the Re-transmission Until Acknowledgment

feature in Chapter 5), re-ordered (e.g. Section 8.8.2.4 (Reception of out-of-order Invoke

messages) of the WTP Speci�cation [183]) or duplicated (e.g. the Transaction Identi�er

feature in Chapter 5). These assumptions about the T-Service-Provider are justi�ed

by the fact that WDP [179], a connection-less protocol, is used in the Transport layer.

WDP (which speci�es UDP to be used over bearer services supporting IP) only provides

addressing via ports. Error-detection and SAR are optional. There is no guarantee of

eventual, in-order or unique delivery of PDUs.

Restriction 7.3 states the characteristics of the T-Service-Provider that are assumed

in the TR-Protocol CPN:

Restriction 7.3 (T-Service-Provider Characteristics). The Transport Service Pro-

vider provides reliable delivery of datagrams (i.e. no corruption, losses or duplicates), but

with no guarantee of ordering. The capacity of the Transport Service Provider is in�-

nite.

As discussed in Chapter 3, an incremental approach to the veri�cation process is being

used. Restriction 7.3 places the current TR-Protocol CPN in an intermediate stage of

97

this process. Modelling the TR-Protocol without the possibility of any errors is the �rst

stage, but the introduction of overtaking is a more interesting scenario. However, loss and

duplication of PDUs is not modelled because it introduces signi�cant complexity into the

state space, potentially limiting the di�erent con�gurations to be analysed. (Section 7.5

discusses how errors increase the state space size). We are, therefore, limited by the

approach we have chosen.

Note that although errors in the channel are not modelled, the Error Handling fea-

ture is modelled, as that comprises provider initiated aborts, and the abort procedures

included in the state tables.

TID Veri�cation

The TID veri�cation protocol feature (discussed in Section 5.3.1) allows the TR-Resp-PE

to verify if the Invoke PDU it received is for an outstanding transaction at the TR-Init-PE.

We can generalize the procedure for determining whether TID veri�cation is necessary

by stating that an Invoke PDU with TID x can either be expected (no TID veri�cation)

or unexpected (initiate TID veri�cation). Therefore, a speci�c caching mechanism is not

required to be modelled. Similarly, the TIDnew �eld in the Invoke PDU header can be

ignored as its use is to invalidate the cache at the TR-Resp-PE when the TID space

wraps.

Simpli�cation 7.6 (TID Veri�cation). The decision on receiving a new Invoke PDU

is an arbitrary choice between initiating a TID veri�cation or not. A speci�c caching

mechanism and the TIDnew �eld in the Invoke PDU are not modelled.

Protocol Data Units

Section 5.3.2 de�ned the header �elds for the Invoke, Ack, Result and Abort PDUs. As

well as these mentioned in the preceding simpli�cations and restrictions, the TR-Protocol

CPN does not model the TID, RES, AbortType and AbortReason �elds because they have

no impact on the behaviour of a single transaction.

Bu�ers of the TR-PEs

Each TR-PE sends PDUs to an output bu�er which is delivered, via the T-Service-

Provider, to the input bu�er of the peer TR-PE. The bu�ers are modelled as part of the

T-Service-Provider. They can have arbitrary capacity.

98

7.2.2 Modelling Assumptions

The TR-Protocol CPN is based mainly on the state tables in the WTP Speci�cation.

These are described in Section 5.3.3 and repeated in full in Appendix B. There are

several assumptions we must make about how to read the state tables and also how to

treat several ambiguities in the WTP Speci�cation.

Assumption 7.1 (Atomic Events). Each state table entry describes an atomic event

of a TR-PE.

Assumption 7.1 allows each entry in the state tables to be modelled as a transition

in the TR-Protocol CPN. There is one exception (i.e. a state table entry that is not an

atomic event) which is described in Section 7.7.

Assumption 7.2 (State Table Conditions). Where state table entry conditions do

not specify values for variables, parameters or header �elds, the variables, parameters

and header �elds can take any value. Where state table entries in one state table have

identical events, the conditions must be mutually exclusive.

The �rst sentence of Assumption 7.2 is an obvious way to read the state tables. The

second sentence of Assumption 7.2 is necessary because several state tables in the WTP

Speci�cation specify entries that, if the conditions were satis�ed, would be inclusive of

other entries. For example, Entry 1 in the TR-Init-PE NULL state table (Table B.1)

requires the transaction class to be 1 or 2. Entry 2 in this table requires the transaction

class to be 1 or 2, and UserAck to be On. Both of these entries have the same event (TR-

Invoke.req). If Assumption 7.2 was not made, then Entry 1 could also include Entry 2.

This is obviously not the intention of the state tables because, from Entry 1, the variable

Uack could be set to false if UserAck was On. Therefore, we assume that the condition

of Entry 1 includes the requirement that UserAck is O�, making the entries with the

same event mutually exclusive. Thus, in this case, the value of the variable UserAck is

not arbitrary.

Assumption 7.3 (Ordering of Actions). The actions in state table entries are or-

dered, from top to bottom.

Being atomic events, we could assume the actions in state table entries could occur

in any order. However, we make Assumption 7.3 because some actions both start and

stop a timer, e.g. Event 10 in the TR-Init-PE RESULT WAIT state table (Table B.2).

Executing the actions in any order would result in di�erent behaviors of the TR-Protocol.

Assumption 7.3 also ensures the TR-Invoke.cnf primitive is delivered to the TR-Init-User

before the TR-Result.ind primitive for Event 10 in the TR-Init-PE RESULT WAIT state

table.

99

Assumption 7.4 (PDUs Without State Table Entries). If a state table does not

have an event for receiving a PDU, then the PDU is ignored upon its receipt.

There are state tables in the WTP Speci�cation that do not have events for the

receipt of all possible PDUs. (Note that an ErrorPDU is de�ned as an \Illegal PDU type

or erroneous header structure" (page 50, [183]), and hence the RcvErrorPDU entry does

not cover the receipt of legal PDUs that are not speci�ed in the state tables.) Table 7.2

shows for all states of both TR-PEs, whether the state tables specify if a PDU can be

received (Y) or not (N). The entries marked n.a. are not applicable because the TR-Init-

PE cannot receive Invoke PDUs and the TR-Resp-PE cannot receive Result PDUs.

TR-PE and State Name Invoke Result Abort Ack Ack (Tve/Tok)

I NULL n.a. Y Y Y Y
I RESULT WAIT n.a. Y Y Y Y
I RESULT RESP WAIT n.a. Y Y N N
I WAIT TIMEOUT n.a. Y Y N N
R LISTEN Y n.a. Y Y Y
R TIDOK WAIT Y n.a. Y N Y
R INVOKE RESP WAIT Y n.a. Y N N
R RESULT WAIT Y n.a. Y N N
R RESULT RESP WAIT N n.a. Y Y Y

Table 7.2: State tables that do not specify the receipt of all PDUs

We have assumed that for all those entries marked with an N in Table 7.2, if a PDU

is received, then it is ignored (discarded). This is a sensible interpretation because the

nature of the TR-Protocol, in that PDUs are re-transmitted and overtaking can occur,

means that it is likely that PDUs will be received in states when they are not required.

For example, suppose the TR-Resp-PE sends an Ack PDU (Entry 9, Table B.7) and

a Result PDU (Entry 1, Table B.8) after receiving the Invoke PDU. As overtaking of

PDUs is allowed in the communication channel, the Result PDU may be received by

the TR-Init-PE (Entry 10, Table B.2) before the Ack PDU. The TR-Init-PE enters the

RESULT RESP WAIT state (Table B.3), which does not specify the event of receiving

an Ack PDU. In this case, it would be sensible to ignore the Ack PDU. Assumption 7.4

signi�es that all PDUs may be received in any state (although no action is taken on the

receipt of some PDUs).

Assumption 7.5 (TveTok Flag). The conditions TIDve and TIDok in a RcvAck state

table entry indicate the received Ack PDU must have the TveTok ag set to 1. The absence

of such a condition in a RcvAck state table entry indicates the received Ack PDU must

have the TveTok ag set to 0.

Assumption 7.2 stated the absence of header �elds in the conditions indicates they

can take any value. Assumption 7.5 is an exception to this. If the TveTok ag is absent,

then we assume TveTok must be set to 0 (i.e. an ordinary Ack PDU is received). This

100

is necessary because while in the RESULT RESP WAIT state (see Table B.9), if the

TR-Resp-PE receives a re-transmitted and delayed Ack(Tok) PDU (Entry 3), it may be

confused as an acknowledgment of the Result PDU. Using Assumption 7.5 and 7.4, the

receipt of an Ack(Tok) PDU in this state will be ignored. Table 7.3 shows Entry 3 of

the TR-Resp-PE RESULT RESP WAIT state table updated to include the appropriate

condition. The addition to the state table is shown in italics.

Event Condition Action Next State

3 RcvAck TveTok=0 Generate TR-Result.cnf LISTEN

Table 7.3: Entry 3 of the TR-Resp-PE RESULT RESP WAIT state table (Table B.9)

modi�ed to include TveTok set to 0

Assumption 7.5 is included to overcome the error of misinterpreting an Ack(Tok) PDU

for an Ack PDU. This was discovered while analysing a previous TR-Protocol CPN. Since

its discovery, the WAP Forum have published a Speci�cation Information Note [177] for

the WTP Speci�cation [183] that also identi�es the problem.

Assumption 7.6 (Acknowledgment Sent Variable). A variable called AckSent is

used by both TR-PEs. There is one variable per transaction. The type of AckSent

is BOOL. AckSent is True at the TR-Init-PE if the TR-Init-PE has sent an Ack(Tok)

PDU. AckSent is True at the TR-Resp-PE if the TR-Resp-PE has sent an Ack PDU.

Assumption 7.6 is necessary because the state tables in the WTP Speci�cation include

conditions that check if an Ack PDU has already been sent. For the TR-Init-PE, Entry 7

of the RESULT WAIT state table (Table B.2) has a condition \Ack(TIDok) already

sent". Similarly, Entry 4 of the TR-Resp-PE RESULT WAIT state table (Table B.8) has

a condition \Ack PDU already sent". Therefore, we introduce the variable AckSent at

each TR-PE that is set at the times speci�ed in Assumption 7.6 so the conditions can be

applied.

Assumption 7.7 (Limiting the Counters). Any counters used by the TR-PEs (AEC

and RCR) cannot have a value higher than its speci�ed maximum (AEC MAX and RCR MAX).

Therefore, whenever an action in a state table entry increments a counter (by 1), there

must be a condition in the state table entry that requires the counter to be less than its

speci�ed maximum.

Assumption 7.7 is required to ensure the RCR counter used by the TR-Init-PE is not

increased above RCR MAX when the TR-Init-PE sends the Ack(Tok) PDU. Entry 3 of the

TR-Init-PE RESULT WAIT state table (Table B.2) increments RCR without checking if

it is less than the maximum. This behaviour results in ambiguity in the WTP Speci�-

cation. It may, for example, create confusion in implementations. The counter may be

implemented as an array populated by time-out periods [183]. The index into the array

101

is the counter. If the array is de�ned to have RCR MAX elements, then the index (RCR)

may be larger than the number of elements.

Table 7.4 shows Entry 3 of the TR-Init-PE RESULT WAIT state table updated to

limit RCR. A new entry is also created so that when an Ack(Tve) PDU is received while

RCR is equal to RCR MAX, it is ignored.

Event Condition Action Next State

3 RcvAck TIDve Send Ack(TIDok) RESULT WAIT
Class == 2 j 1 Increment RCR
RCR<RCR MAX Start timer, R[RCR]

3a RcvAck TIDve Ignore RESULT WAIT

Class == 2 j 1
RCR==RCR MAX

Table 7.4: Entries 3 and 3a of the TR-Init-PE RESULT WAIT state table (Table B.2)

modi�ed to limit RCR

Assumption 7.8 (Notifying TR-Users of Aborts). When a transaction is aborted

by a TR-PE as a result of a time-out, a TR-Abort.ind primitive must be delivered to the

TR-User.

Assumption 7.8 ensures the TR-User is noti�ed that the transaction has been aborted.

This assumption is necessary because, from the state tables in the WTP Speci�cation,

upon expiration of the acknowledgment timer, the TR-Init-PE and TR-Resp-PE abort

the transaction (i.e. return to their respective initial states) without delivering a TR-

Abort.ind primitive to the TR-User. The two erroneous state table entries are Entry 8

of the TR-Init-PE RESULT RESP WAIT state table (Table B.3) and Entry 8 of the

TR-Resp-PE INVOKE RESP WAIT state table (Table B.7). Figure 7.3 shows a possible

scenario where the TR-Init-PE aborts and the TR-Resp-PE receives the Abort PDU

and noti�es its user with a TR-Abort.ind primitive. The TR-Init-User is not aware the

transaction has been aborted. The TSD is an extension of the service TSDs used in

Chapter 6. Service primitives are shown in the same way as the service TSDs, but the

vertical lines now represent the TR-PEs. The area between the two vertical lines (TR-

PEs) represents the T-Service-Provider. The delivery of PDUs between the TR-PEs,

with a delay, are shown there. The expiration of a timer is shown as a black square at

the TR-PE (on the vertical line). Alongside the service primitives, an abbreviation of

the state of the TR-PE is shown (e.g. NU = NULL, RW = RESULT WAIT). Vertical,

double headed arrows show the timer interval (A, R or W) that was in use when the

time-out occurs.

Tables 7.5 and 7.6 show the updated entries for the TR-Init-PE RESULT RESPWAIT

(Entry 8) and TR-Resp-PE INVOKE RESP WAIT (Entry 8) state tables, respectively,

to ensure the TR-Abort.ind primitive is delivered to the TR-User.

102

TR-Invoke.res

TR-Result.req
TR-Invoke.cnf

TR-Result.ind

TR-Abort.ind

TR-Invoke.ind
Invoke

RW

NU TR-Invoke.req

IRW

LI

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Result

Abort

RRW

Time-out

Time-out
A

A

LI

RW

RRW

NU

Figure 7.3: Error in the TR-Protocol where both TR-PEs have aborted the transaction,

but the TR-Init-User is not noti�ed of the abort

Event Condition Action Next State

8 TimerTO A AEC == Abort transaction NULL
AEC MAX Generate TR-Abort.ind

Send Abort PDU (NORESPONSE)

Table 7.5: Entry 8 of the TR-Init-PE RESULT RESP WAIT state table (Table B.3)

modi�ed to deliver the TR-Abort.ind primitive when aborting due to a time-out

Event Condition Action Next State

8 TimerTO A AEC == Abort transaction LISTEN
AEC MAX Generate TR-Abort.ind

Send Abort PDU (NORESPONSE)
Start timer, W

Table 7.6: Entry 8 of the TR-Resp-PE INVOKE RESP WAIT state table (Table B.7)

modi�ed to deliver the TR-Abort.ind primitive when aborting due to a time-out

103

Assumption 7.9 (Restricting TR-Result.req when UserAck On). When User-

Ack is On, the TR-Resp-User cannot submit the TR-Result.req primitive before it has

submitted the TR-Invoke.res primitive.

Assumption 7.9 is necessary because after the TR-Resp-PE delivers the TR-Invoke.ind

primitive to the TR-Resp-User, it enters the INVOKE RESP WAIT state which allows

the submission of the TR-Result.req primitive (Entry 2 of Table B.7). When UserAck is

On, the TR-Result.req primitive should only be possible while the TR-Resp-PE is in the

RESULT WAIT state (Table B.8).

Table 7.7 shows Entry 2 of the TR-Resp-PE INVOKE RESP WAIT state table up-

dated by placing a condition that restricts the submission of TR-Result.req to the case

when UserAck is O�.

Event Condition Action Next State

2 TR-Result.req Uack==False Reset RCR RESULT RESP
Start timer, R[RCR] WAIT
Send Result PDU

Table 7.7: Entry 2 of the TR-Resp-PE INVOKE RESP WAIT state table (Table B.7)

modi�ed to prevent the submission of TR-Result.req when UserAck is On

Assumption 7.10 (Restricting TR-Aborts after TR-Result.res). The TR-Init-

User cannot submit a TR-Abort.req primitive, nor be delivered a TR-Abort.ind primitive

after the TR-Init-PE has sent an Ack PDU acknowledging the Result PDU.

Assumption 7.10 is included so the TR-Protocol reects the behaviour of the TR-

Service described in Assumption 6.7.

After the TR-Init-User has submitted the TR-Result.res primitive, the TR-Init-PE

enters the WAIT TIMEOUT state (Entries 1 and 2 of the TR-Init-PE RESULT RESP

WAIT state table (Table B.3)). The TR-Abort primitives should not be possible in

this scenario. However, the WAIT TIMEOUT state may also be entered if only the

TR-Init-PE acknowledges the Result PDU (i.e. the TR-Init-User does not submit a TR-

Result.res primitive) as given by Entry 9 of the TR-Init-PE RESULT RESP WAIT

state table. Although the TR-Service allows the TR-Abort primitives to occur in this

scenario, we restrict the TR-Protocol so that they cannot. We assume the purpose of the

WAIT TIMEOUT state is to only re-transmit the Ack PDU, if necessary. Therefore, our

suggested change to the TR-Protocol is to disallow TR-Abort primitives in the WAIT

TIMEOUT state.

The event corresponding to the TR-Init-User submitting the TR-Abort.req primitive

remains, but it now corresponds to a local user event (Entry 7 of Table B.4). We call

this event Clear. The TR-Init-User noti�es the TR-Init-PE to clear the transaction state

information. This is not an end-to-end event.

104

The receipt of an Abort PDU while in the WAIT TIMEOUT state (Entry 4) is

possible, but it does not initiate the delivery of a TR-Abort.ind primitive to the TR-

Init-User. Only the transaction state information is cleared upon receipt of the Abort

PDU.

Table 7.8 shows Entries 4 and 7 of the TR-Init-PE WAIT TIMEOUT state table

updated to restrict the TR-Abort primitives in this state. Text to be deleted from state

tables is indicated with a line through it.

Event Condition Action Next State

4 RcvAbort Abort transaction NULL
Generate TR-Abort.ind

7 TR-Abort.req Abort transaction NULL
Clear Send Abort PDU (USER)

Table 7.8: Entries 4 and 7 of the TR-Init-PE WAIT TIMEOUT state table (Table B.4)

modi�ed to remove TR-Abort primitives

A discussion of Assumptions 7.7, 7.8 and 7.9 have been submitted to the WAP Forum

[55]. A response indicated that these suggested changes would be acted upon, which is

evident in Version 2.0 of WTP [187].

7.3 Structure of the TR-Protocol CPN

The hierarchy page for the TR-Protocol CPN is shown in Figure 7.4. The TR-Protocol

CPN consists of 15 CPN pages, one page for declarations and several pages for analysis

code and results. The CPN pages are divided into four hierarchical levels. The �rst

level presents an abstract view of the TR-Protocol on one page (called TR Protocol).

The second level shows the two TR-PEs (pages TR Init PE and TR Resp PE), which are

further decomposed in the third level where each state table of a TR-PE is modelled on

a separate page. The fourth level comprises just one page, called I RW RcvResult Cnf,

which models a special case of two primitives being delivered to the TR-Init-User as part

of one action. The pages for each of the levels will be described in detail in Sections 7.4

to 7.7.

The Declarations page de�nes all types, constants, variables and functions used in

the TR-Protocol CPN. The declarations will be introduced incrementally as we progress

through the descriptions of the CPN pages. The complete set of declarations are shown

in Appendix D (Listing D.1). The code and results on the analysis pages will be discussed

in Chapter 8.

The hierarchical structure of the TR-Protocol CPN aids in the development and main-

tenance of the model by providing a logical structure that can be validated against the

WTP Speci�cation [183]. Section 7.6 describes how the validation is achieved. Another

105

Hierarchy#10010

Declarations#900

I_NULL#111

I_RESULT_WAIT#112

I_RESULT_RESP_WAIT#113

I_WAIT_TIMEOUT#114

R_LISTEN#121

R_TIDOK_WAIT#122

R_INVOKE_RESP_WAIT#123

R_RESULT_WAIT#124

R_RESULT_RESP_WAIT#125

I_RW_RcvResult_Cnf#1121

TR_Init_PE#11 TR_Resp_PE#12

TR_Protocol#1 M Prime

DMCode#901

Analysis Pages

Options#903

FSMCode#902 TwoICNFs#905

InitialMarking#904

Twoiinds#906

VerifyError#907

R_ABORT#126I_ABORT#115

RcvResult_Cnf

I_NULL

I_RESULT_WAIT

I_RESULT_RESP_WAIT

I_WAIT_TIMEOUT

R_LISTEN

R_TIDOK_WAIT

R_INVOKE_RESP_WAIT

R_RESULT_WAIT

R_RESULT_RESP_WAIT

TR_Init_PE TR_Resp_PE

R_ABORTI_ABORT

Figure 7.4: Hierarchy page for the TR-Protocol CPN

advantage of the structure is the choice of di�erent types of visualization when examin-

ing the dynamic behaviour of the TR-Protocol CPN. For example, from the second level

pages, the current state of a TR-PE during an interactive simulation can be clearly seen,

without any concern for the details of what is happening in that state. However, as all

the state tables are signi�cantly di�erent, we cannot re-use any pages (i.e. using page

instances in Design/CPN) to improve maintainability of the model.

7.4 Overview Page

The TR Protocol page, shown in Figure 7.5, presents an abstract view of the TR-Protocol.

This view is similar to that shown in Figure 7.1 where the two TR-PEs, modelled by

transitions TR Init PE and TR Resp PE, communicate with each other by sending and

receiving PDUs. The PDUs are delivered via the T-Service-Provider (which includes the

input and output bu�ers). The places InitToResp and RespToInit, which are collectively

referred to as communication places, model the T-Service-Provider. (The dashed arc from

InitToResp to TR Init PE models a special case where the transaction is aborted before a

PDU is delivered to the TR-Resp-PE. This, and the reason for removing a token from

InitToResp is discussed in Section 7.6.3.)

The communication places are typed by the colour set PDU (shown in italics above

the place). The details of the PDU colour set will be introduced in Section 7.5, but for

now it is suÆcient to know that it de�nes the di�erent types of PDUs (e.g. Invoke, Ack,

. . .) and any relevant header �elds. Two places are used to clearly visualize the direction

106

HS

TR_Init_PE#11

TR_Init_PE

HS

TR_Resp_PE#12

TR_Resp_PE

InitToResp

PDU

RespToInit

PDU

Figure 7.5: TR Protocol page in the TR-Protocol CPN

of ow of PDUs between the TR-PEs.

Each place realizes the in�nite capacity, and possibility of re-ordering of PDUs in

the T-Service-Provider (Restriction 7.3). Because of the re-ordering, the communication

places conveniently model the bu�ers, independently of their queuing discipline, as the

TR-PEs simply view the communication channel as allowing re-ordering. The mechanism

that queues PDUs before sending them (see Section 5.3.3) is, therefore, also modelled by

the communication places.

The TR Protocol page does not show the TR-Users (cf. Figure 7.1). This is because

we chose to model the TR-Users implicitly via the occurrence of transitions representing

the submission and delivery of primitives. These transitions are in the state table pages

described in Section 7.6.

Each TR-PE transition is decomposed into a sub-page that provides further details

on the TR-PEs operation. The boxed HS below the transitions on the TR Protocol page

designates them as hierarchical substitution transitions. The name of the corresponding

sub-page is shown in the dashed box. Arc inscriptions are not necessary as their details

become apparent on the sub-pages.

7.5 Protocol Entity Pages

The second level pages in the TR-Protocol CPN show the di�erent states of the TR-PEs.

The TR Init PE page is shown in Figure 7.6 and the TR Resp PE page in Figure 7.7.

The TR-PE pages each introduce a new place. On the TR Init PE page there is the

place named Initiator (typed by the colour set InitState), and for the TR Resp PE page a

place named Responder (typed as RespState). Together, these two places are referred to

as the state places. They model the current state of their respective TR-PEs.

The TR Init PE page has �ve (substitution) transitions. Each of the top four tran-

107

HS

I_NULL#111

I_NULL

HS

I_WAIT_TIMEOUT#114

I_WAIT_TIMEOUT

InitToResp

P I/O

PDU

RespToInit

P In

PDU

HS

I_RESULT_WAIT#112

I_RESULT_WAIT

HS

I_RESULT_RESP_WAIT#113

I_RESULT_RESP_WAIT

Initiator

InitState

(I_NULL,
 {Uack=F,
 RCR=0,
 AckSent=F,
 Timer=F,
 HoldOn=F})

Initial Marking
Initiator

I_ABORT

HS

I_ABORT#115

Figure 7.6: TR Init PE page in the TR-Protocol CPN

HS

R_LISTEN#121

R_LISTEN

HS

R_TIDOK_WAIT#122

R_TIDOK_WAIT

HS

R_INVOKE_RESP_WAIT#123

R_INVOKE_RESP_WAIT

HS

R_RESULT_WAIT#124

R_RESULT_WAIT

HS

R_RESULT_RESP_WAIT#125

R_RESULT_RESP_WAIT

InitToResp

P In

PDU

RespToInit

P Out

PDU

Responder

RespState

(R_LISTEN,
 {Uack=F,
 RCR=0,
 AckSent=F,
 Timer=F})

Initial Marking
Responder

R_ABORT

HS

R_ABORT#126

Figure 7.7: TR Resp PE page in the TR-Protocol CPN

108

sitions model a state of the TR-Init-PE. The bottom transition, I ABORT models a

T-Service-Provider initiated abort. The letter I pre�xes the state names to distinguish

from the states of the TR-Resp-PE. The meaning of the states is described in Table 5.8.

Each transition is decomposed into a sub-page that models the state table (or actions,

for I ABORT) for the corresponding state of the TR-Init-PE. Section 7.6 describes the

sub-pages.

To gain a better understanding of how the TR-PE pages are structured, we introduce

the PDU, InitState and RespState colour sets. Listing 7.1 de�nes two basic colour sets

from which the others are derived.

Listing 7.1: Basic colour sets used in the TR-Protocol declarations

1 color Flag = bool with (F,T);

2 color RCR c = int;

The colour set Flag is a boolean type that is used to model boolean variables stored

by the TR-PEs or 1-bit header �elds in PDUs. By default, the colour set includes the

colours false and true. We can also use the colours F and T (for brevity). The colour

set RCR c is de�ned as the integers. It models the values of the TR-PE counter RCR.

The suÆx c (for colour) is used on this and other colour sets to distinguish them from

variables when necessary.

Listing 7.2 de�nes the colour sets and variables that represent PDUs in the TR-

Protocol CPN.

Listing 7.2: PDU colour sets used in the TR-Protocol declarations

1 color InvokePDU c = record

2 RID:Flag � (� Retransmission Indicator �)
3 UP:Flag; (� User or PE acknowledgment �)
4 color ResultPDU c = Flag; (� RID �)
5 color AckPDU c = record

6 RID:Flag � (� Retransmission Indicator �)
7 TveTok:Flag; (� TID Veri�cation /TID Ok �)
8 color AbortPDU c = with abort; (� No �elds �)
9 color PDU = union InvokePDU:InvokePDU c +

10 ResultPDU:ResultPDU c +

11 AckPDU:AckPDU c +

12 AbortPDU:AbortPDU c;

13 var invoke :InvokePDU c;

14 var result :ResultPDU c;

15 var ack:AckPDU c;

Each PDU type is modelled as a di�erent colour set. The Invoke and Ack PDUs are

modelled as records, with entries corresponding to the necessary header �elds as de�ned

in Section 7.2.1. Records are used (as opposed to products) as they allow meaningful

names to be given to the entries. As only the RID header �eld is modelled for the Result

109

PDU, we de�ne its colour set as Flag. The Abort PDU has no header �elds to be modelled,

and so we only need a token (abort) to represent the PDU.

The �nal colour set, PDU, is a union of all the PDU types. The variables invoke, result

and ack are used to represent tokens of the respective PDU colour sets.

The de�nition of the PDU colour sets has been chosen so that the inscriptions in the

TR-Protocol CPN (which are written in Standard ML) are clear and consistent. The

state table pages in Section 7.6 will illustrate this.

Listing 7.3 de�nes the colour sets and variables that represent the state of the TR-PEs.

Listing 7.3: TR-PE state de�nitions used in the TR-Protocol declarations

1 (� Initiator & Responder State Names �)
2 color IStateName = with

3 I NULL j
4 I RESULT WAIT j
5 I RESULT RESP WAIT j
6 I WAIT TIMEOUT ;

7

8 color RStateName = with

9 R LISTEN j
10 R TIDOK WAIT j
11 R INVOKE RESP WAIT j
12 R RESULT WAIT j
13 R RESULT RESP WAIT ;

14

15 (� Transaction Data � Initiator �)
16 color ITransData = record

17 Uack:Flag � (� True if UserAck On �)
18 RCR:RCR c � (� Retransmission Counter �)
19 AckSent:Flag� (� True if Ack(TIDok) PDU sent �)
20 HoldOn:Flag � (� True if Ack has been received �)
21 Timer:Flag ; (� True if Timer on �)
22

23 (� Transaction Data � Responder �)
24 color RTransData = record

25 Uack:Flag � (� True if UserAck On �)
26 RCR:RCR c � (� Retransmission Counter �)
27 AckSent:Flag� (� True if Ack PDU sent �)
28 Timer:Flag ; (� True if Timer on �)
29

30 color InitState = product IStateName � ITransData;

31 color RespState = product RStateName � RTransData;

32

33 var isn :IStateName;

34 var rsn :RStateName;

35 var it : ITransData;

36 var rt :RTransData;

The state of a TR-PE for a single transaction comprises the name of the state and

a set of values stored for that state. The colour sets IStateName and RStateName de�ne

110

the set of state names for the TR-Init-PE and TR-Resp-PE, respectively. These state

names are identical to the transition names on the TR-PE pages and the states de�ned in

Table 5.8. The colour sets ITransData and RTransData de�ne the values of the variables

that are stored by the TR-PE (see Section 5.3.3). We refer to these sets as the transaction

data.

The TR-Init-PE and TR-Resp-PE store some variables used for the same purpose.

Uack and AckSent represent the variables of the same name, and RCR represents the

counter of the same name described in Chapter 5. Timer models the transaction timer

used by the TR-PEs as either on (T) or o� (F). When a timer is o�, a time-out of any

sort cannot occur. When the timer is on, a time-out may occur. Modelling the timer

in this way, as opposed to an actual timer, simpli�es the TR-Protocol CPN and state

space analysis, while maintaining the necessary functionality of the TR-Protocol timers

(i.e. the possibility of a time-out is modelled, but not the actual timer).

The TR-Init-PE also uses the HoldOn variable. As only one transaction is modelled

(Simpli�cation 7.4), it is not necessary to include the variables SendTID and RcvTID for

either of the TR-PEs .

The colour sets InitState and RespState are a product of their respective state names

and transaction data colour sets. Variables are also de�ned for accessing each component

of the product. Note that although there is some commonality between the transaction

data colour sets of the TR-PEs, Standard ML does not provide any inheritance constructs

and, therefore, we have de�ned the colour sets separately. This limits the maintainability

of the TR-Protocol CPN.

Referring back to the TR Init PE page shown in Figure 7.6, we see that the state place

Initiator has an initial marking that de�nes the initial state of the TR-Init-PE. The TR-

Init-PE is in the state named I NULL, all the boolean variables are initially false (F) and

RCR is initially 0. These are the default values for the transaction data used by the TR-

Init-PE. The arcs between the state place and transitions are all bi-directional. Again,

the inscriptions are not necessary as they become apparent on the sub-pages presented

in Section 7.6. However, in general the TR-Init-PE is modelled so that transitions on a

sub-page are only enabled when the state name in the place Initiator matches the name of

the sub-page. The I ABORT page is one exception which is explained in Section 7.6.11.

Every transition on the TR Init PE page except, I ABORT, has an output arc to the

InitToResp communication place and an input arc from the RespToInit communication

place. The output arcs indicate that PDUs are sent and the input arcs that PDUs are

received. (Note that the transition I RESULT WAIT also has a dashed input arc from

InitToResp. This models a special case where a transaction is aborted before a PDU is

delivered to the TR-Resp-PE. This is discussed in Section 7.6.3.) The communication

places have an annotation specifying they are port places (given by the boxed P). As

111

discussed in Chapter 4, port places indicate that it is an input (In), output (Out) or

input/output (I/O) place on a sub-page, and they are assigned to socket places of the

same name on the page where the sub-page is represented as a substitution transition

(Figure 7.5).

The TR Resp PE page shown in Figure 7.7 has a similar structure to the TR Init PE

page. There are �ve substitution transitions modelling the states of the TR-Resp-PE,

and one modelling the T-Service-Provider initiated abort (R ABORT). The TR-Resp-

PE is initially in the state named R LISTEN with all boolean variables set to false and

RCR set to 0. Again, these are the default values for the transaction data used by the

TR-Resp-PE.

The structure of the TR Init PE and TR Resp PE pages aids in visualizing each TR-PE

from an abstract view. The substitution transitions (except I ABORT and R ABORT) are

identical to the states shown in Table 5.8. During simulations and state space analysis,

we can also view the current state of the TR-PE and the PDUs in the communication

channel. However, the communication with the TR-Users is not shown, nor the proce-

dures occurring in the TR-PE states. The sub-pages described in the next section show

these details.

7.6 State Table Pages

There are 11 pages on the third level of the TR-Protocol CPN. Nine of them are sub-

pages of the transitions on the TR-PE pages (Figure 7.6 and 7.7) and model the state

tables described in Chapter 5. The other two pages (I ABORT and R ABORT) model the

provider initiated aborts. All of the pages have a similar structure, which we outline in

Section 7.6.1 using the page I NULL as an example. Sections 7.6.2 to 7.6.11 then describe

each state table page, with focus on the design decisions and any features not covered by

the general page structure. We continue to introduce declarations when necessary.

7.6.1 General Page Structure

The state tables (Appendix B) used in the WTP Speci�cation [183] to describe the TR-

Protocol comprise, for each state of the TR-PE: an event; a set of conditions; a set

of actions; and the next state of the TR-PE. In addition, before an incoming event is

processed, a test is performed as speci�ed by Table 5.6. This test table and the state

tables are the main source of information in the WTP Speci�cation for our TR-Protocol

CPN. We have chosen to model each state table as a separate page (called a state table

page). Several events in the test table are also included on these state table pages.

These will be discussed in Sections 7.6.2 and 7.6.6. The advantages of modelling the

112

TR-Protocol CPN as state table pages are:

� the repetitive structure aids in understanding of the TR-Protocol CPN|once the

general structure of one page is understood, it should be easy to grasp the meaning

of the other pages; and

� the relationship between the TR-Protocol CPN and the TR-Protocol state tables

simpli�es validation of the model.

One disadvantage of the structure chosen is that we have several transitions that

model the same actions (although in di�erent states). It may be possible to combine

such transitions so that they model a common action that can be applied in multiple

states. However, the ability to quickly validate the transitions with the state tables

outweighs this disadvantage.

The remainder of this sub-section describes the purpose and conventions for the state

places, arc inscriptions and transitions used in the TR-Protocol CPN. Also presented is

a modelling decision not to include entries of the state tables that ignore PDUs. The

I NULL page shown in Figure 7.8 is used as an example.

Invoke_req

UserAckFlag F

RespToInit

PDU

P In

InitToResp

PDU

P Out

RcvAck_Tve

[#TveTok(ack)]

Initiator

InitState

P I/O

1/2(TR-Invoke.req)

u

AbortPDU abort

AckPDU ack

(I_NULL,it)

(I_RESULT_WAIT,
 StartTimerI(
 AssignUackI(it,u)))

InvokePDU
{RID=F,UP=u}(I_NULL,it)

(I_NULL,it)

Figure 7.8: I NULL page in the TR-Protocol CPN

State Places and Arc Inscriptions

Each state table page contains a state place, depending on which TR-PE the page is

describing. The state place stores the current state name and transaction data. Every

transition has an input arc and output arc between it and the state place. The input arc

is always shown higher on the page than the output arc. The inscription of the input

and output arcs are shown above and below the arcs, respectively.

113

An input arc from the state place to a transition puts a condition on the enabling of

the transition that it must be in the state being modelled by the state table page. For

example, on the I NULL page (Figure 7.8), the input arc inscriptions is (I NULL,it). One

condition for these transitions being enabled is that the TR-Init-PE is in the I NULL state.

The variable it (and rt on the TR-Resp-PE state table pages) indicates the transaction

data can take any values. Further enabling conditions are put on the transitions using

guards (discussed shortly). The output arcs from the transitions to a state place specify

the next state of the TR-PE. The state name and the transaction data may or may not

be changed. As Standard ML records are used to model the transaction data, all entries

must be de�ned when changing the transaction data. Therefore, we have de�ned a set

of functions that modify the transaction data. Using these functions on the output arc

inscriptions, as opposed to showing the complete entry, increases the clarity of the pages.

For example, Listing 7.4 de�nes the two functions used on the output arc of transition

Invoke req to Initiator.

Listing 7.4: Selected functions used in the TR-Protocol declarations

1 fun AssignUackI (t :ITransData, u:Flag): ITransData =

2 fUack = u,

3 RCR = #RCR(t),

4 AckSent = #AckSent(t),

5 HoldOn = #HoldOn(t),

6 Timer = #Timer(t)g
7 fun StartTimerI (t :ITransData): ITransData =

8 fUack = #Uack(t),

9 RCR = #RCR(t),

10 AckSent = #AckSent(t),

11 HoldOn = #HoldOn(t),

12 Timer = Tg

AssignUackI() has two parameters: t representing the transaction data at the TR-Init-

PE and u representing the value of UserAck to be used for the transaction. The function

assigns the Uack entry of the record in the transaction data the value u and assigns the

remaining record entries to those given in t. The result is the transaction data given as

input is updated with the value u for the Uack entry. StartTimerI() performs a similar

update, but sets Timer to true (T). From the output arc in Figure 7.8, we see that

the occurrence of Invoke req changes the state name of the TR-Init-PE from I NULL to

I RESULT WAIT, assigns the variable Uack to u in the transaction data and starts the

timer.

Functions similar to StartTimerI() are de�ned for updating other variables and coun-

ters in the transaction data for the TR-PEs. The function names are based on the actions

in the state tables (Appendix B). This gives strong correlation between the actions and

the arc inscriptions, simplifying validation of the model. The complete set of functions is

114

given Listing D.1. Note that separate functions are required for the TR-Init-PE and TR-

Resp-PE because the transaction data records (ITransData and RTransData) are di�erent

(cf. Standard ML doesn't support inheritance). This further limits the maintainability

of the TR-Protocol CPN.

Transitions

In general, transitions on state table pages model entries in the state tables. The following

two conventions are used for the transitions that model entries in the state tables:

1. Transition names are given based on the entry event. In some cases the names are

modi�ed to obtain unique and meaningful names for each state table page.

2. A number in the lower right hand corner of the transition indicates the entry that

the transition is modelling. Recall that we have numbered the Transaction Class

2 events in the state tables from the WTP Speci�cation (Appendix B). In some

cases there are multiple numbers (separated by a forward slash (/)) meaning the

transition models multiple entries. The numbers simplify the comparisons with the

state tables when validating the model.

For example, the I NULL page has a transition named Invoke req which models both

Entry 1 and Entry 2 in the NULL state table for the TR-Init-PE (Table B.1).

The purpose of the transitions can be classi�ed into six groups:

Primitive Submission: A TR-User submits a TR-Service primitive to the TR-

PE. These transitions model the event of the TR-PE receiving the primitive from

the TR-User. This also implicitly models the TR-User submitting the primitive.

The primitive submitted by the TR-User is shown in parenthesis below the tran-

sition name. For example, transition Invoke req models the submission of the TR-

Invoke.req primitive by the TR-Init-User.

Primitive Delivery: A TR-PE delivers a TR-Service primitive to the TR-User.

These transitions model the event of the TR-PE sending the primitive to the TR-

User. This also implicitly models the TR-User being delivered the primitive. The

primitive delivered to the TR-User is shown in parenthesis below the transition

name.

Sending a PDU: A TR-PE sends a PDU to the peer TR-PE. An arc from the

transition to an appropriate communication place is present. The inscription on the

arc indicates the type of PDU and the values set in the header �elds. For example,

transition Invoke req indicates an Invoke PDU is sent, with RID set to F and UP set

to the value of u (u is discussed in Section 7.6.2).

115

Receiving a PDU: A TR-PE receives a PDU from the peer TR-PE. An arc from

an appropriate communication place to the transition is present. The inscription

on the arc indicates the type of PDU that may be received. For example, transition

RcvAck Tve indicates an Ack PDU is received from the TR-Resp-PE.

Time-out: A timer reaches its maximum value. If the timer has an associated

counter (e.g. RCR), and that counter is less than its maximum value, then the

counter is increased. If the counter is equal to the maximum value, when a time-out

transition occurs, then the transaction is aborted. Examples of time-out transitions

will be seen in other state table pages (e.g. Section 7.6.3).

Provider Abort: The T-Service-Provider initiates an abort. These transitions

are discussed in Section 7.6.11.

A transition will have one or more of the above purposes. For example, the transition

Invoke req signi�es both a submission of the TR-Invoke.req primitive and sending of the

Invoke PDU. Guards on the transitions (shown in italics and inside square brackets)

restrict their enabling based on the transaction data values and the header �elds of the

received PDUs. For example, the guard on transition RcvAck Tve indicates the received

PDU is an Ack(Tve) PDU (i.e. TveTok=T).

Entries that Ignore PDUs

From the state tables and Assumption 7.4, there are entries that ignore PDUs upon

receipt. We model these ignore entries by leaving the PDUs in the communication

channel. A transition could be introduced which: a) discards the PDU and b) leaves the

TR-PE in the same state. However, we argue that the same result occurs if the PDU is left

in the channel, because the channel allows for re-ordering of PDUs, and hence following

PDUs will not be blocked by the PDU that is ignored. (Preliminary analysis of a model

that included transitions modelling the ignore entries did indeed give the same result, in

terms of the four desired properties de�ned in Chapter 8. However, the extra transitions

resulted in increases in the numbers of nodes (by a factor of approximately 1.3) and

number of arcs (factor of 2.5), and the processing times doubled.) The only di�erence is

that the marking of the communication places will include the PDUs that are ignored,

and thus our de�nition of a successful terminal state (see Chapter 8, Property 8.2) needs

to take this into account. This has the bene�cial e�ect of reducing the size of the state

space, while preserving the essential behaviour of the protocol.

116

7.6.2 I NULL

The I NULL page is shown in Figure 7.8. This page models the TR-Init-PE while there

is no transaction in progress (see Table B.1). The TR-Init-PE is initially in the state

named I NULL. As well as the components described in Section 7.6.1, the I NULL page

contains a place called UserAck. This place is typed by the colour set Flag and its initial

marking models the selection of the UserAck feature by the TR-Init-User. In Figure 7.8

the initial marking is F, indicating that UserAck is O�. The analysis in Chapters 8 and 9

consider scenarios where the initial marking is T as well. We chose to model UserAck as

a parameter to the TR-Protocol CPN (via the initial marking) so we can investigate the

behaviour when UserAck is O� and On separately, in the same manner as was done for

the TR-Service CPN in Chapter 6. Modelling UserAck non-deterministically is possible,

but it will increase the state space size.

The Invoke req transition models Entries 1 and 2 of Table B.1. The only di�erence

between the entries is the variable Uack is set to true when the parameter UserAck in the

TR-Invoke.req primitive is set. Therefore, upon occurrence of Invoke req, the variable

Uack in the transaction data is assigned the value of u (which is a variable of type Flag),

obtained from the place UserAck, using the function AssignUackI. Invoke req is the only

transition enabled in the initial marking of the TR-Protocol CPN. Upon its occurrence, an

Invoke PDU is sent to the TR-Resp-PE and the TR-Init-PE enters the I RESULT WAIT

state.

Transition RcvAck Tve models Entry 2 of the tests on incoming events given in Ta-

ble 5.6. If the TR-Init-PE has no transaction outstanding (i.e. in the state named I NULL),

then, on receipt of an Ack(Tve) PDU, the TR-Init-PE sends an Abort PDU to the TR-

Resp-PE. The Abort PDU signi�es a negative response to a TID veri�cation.

We have only modelled Entries 1 and 2 of Table 5.6 (the tests on incoming events).

Entry 3 states that Ack, Result and Abort PDUs must be ignored if received for a

transaction that is not outstanding, and therefore correspond to ignore entries that are

not explicitly modelled. The remaining entries of Table 5.6 are not modelled because the

corresponding features are outside the scope of the TR-Protocol CPN (see Section 7.2).

7.6.3 I RESULT WAIT

The I RESULT WAIT page is shown in Figure 7.9. This page models the TR-Init-PE

waiting for the Result PDU (and Ack PDUs) after it has sent an Invoke PDU (see

Table B.2). There are 11 transitions, one of which is a substitution transition. The �rst

two transitions at the top of the page, UserAbort and ProviderAbort, model the special

cases of a transaction being aborted before the �rst Invoke PDU has delivered to the

TR-Resp-PE (i.e. the transaction is complete without the TR-Resp-PE being aware that

117

the TR-Init-User started it). We will explain these two transitions, which do not model

speci�c entries in the state tables, in further detail shortly.

The Abort req transition models the TR-Init-User submitting a TR-Abort.req prim-

itive which aborts the transaction. The TR-Init-PE sends an Abort PDU to notify the

TR-Resp-PE that the transaction has been aborted, and re-enters the I NULL state. Ev-

ery transition modelling the TR-Init-PE aborting a transaction causes the TR-Init-PE

to re-enter the I NULL state and re-set the transaction data to its default values (using

the function ClearInitI()).

Returning to the top two transitions on this page, we see that UserAbort, like the tran-

sition Abort req, models the TR-Init-User submitting a TR-Abort.req primitive. However,

UserAbort models the special case where an Invoke PDU has not yet been sent by the

local host of the TR-Init-PE. Therefore, instead of the local host sending the Invoke PDU

and Abort PDU, neither PDUs are sent, and the transaction is ended (the TR-Init-PE

enters the I NULL state). However, an InvokePDU token as been added to the place Init-

ToResp. In this special case, the marking of InitToResp with an InvokePDU token does

not mean the Invoke PDU has been sent by the local host (i.e. it cannot yet be received

by the TR-Resp-PE)|it is only ready to be sent. UserAbort has a dashed input arc from

InitToResp that removes the InvokePDU so it cannot be received by the TR-Resp-PE.

The guard on UserAbort speci�es this special case can only occur if there have been no

re-transmissions of the Invoke PDU (once a re-transmission occurs, the original Invoke

PDU must have been sent).

The transition ProviderAbort models the special case where the T-Service-Provider

initiates an abort after the submission of the TR-Invoke.req primitive, but before the

Invoke PDU has been delivered to the TR-Resp-PE. (The general case of a T-Service-

Provider initiated abort is modelled on the I ABORT page|see Section 7.6.11.) Like

UserAbort, no re-transmissions can have occurred, and the InvokePDU token is removed

from the InitToResp place. The TR-Init-PE enters the I NULL state. Although in the

CPN UserAbort and ProviderAbort perform the same operations, they are modelled as

separate transitions because they correspond to di�erent primitives occurring. For the

language analysis in Chapter 8 it is necessary that there is a one-to-one mapping of

service primitives to transitions.

The next three transitions, TimerTO R Max, TimerTO R and TimerTO R Tve, model

the re-transmission timer expiring. The transition guards specify di�erent conditions on

the time-outs. All transitions that model a time-out must have the Timer entry in the

transaction data set to T, i.e. the timer must be on for a time-out to occur. We now

introduce the �nal set of declarations for the TR-Protocol CPN that de�ne the constants

used for the maximum counter values (Listing 7.5).

118

Initiator

InitState

P I/O

Abort_req

RcvAck_Cnf

[not(#TveTok(ack))]

[#RCR(it)=RCRImax
andalso #Timer(it)]

TimerTO_R_Max

RcvResult

[#HoldOn(it)]

RcvAbort

TimerTO_R

[#RCR(it)<RCRImax
andalso not(#AckSent(it))
andalso #Timer(it)]

RespToInit

PDU

P In

TimerTO_R_Tve

[#RCR(it)<RCRImax
andalso #AckSent(it)
andalso #Timer(it)]

PDU

InitToResp

P I/O

RcvResult_Cnf

HS

I_RW_RcvResult_Cnf#11

RcvAck_Tve

[#TveTok(ack)
andalso
#RCR(it)<RCRImax]

(TR-Abort.ind)

(TR-Invoke.cnf)

(TR-Result.ind)

(TR-Invoke.cnf
TR-Result.ind)

(TR-Abort.ind)

10

1

2

3

4

6

8

7

9

(TR-Abort.req)

UserAbort

[#RCR(it)=0]

ProviderAbort

[#RCR(it)=0]

(TR-Abort.req)

(TR-Abort.ind)

(I_RESULT_WAIT,it)

AckPDU ack(I_RESULT_WAIT,it)

(I_RESULT_WAIT,
 SetHoldOnI(
 StopTimerI(it)))

(I_RESULT_WAIT,it)

(I_RESULT_WAIT,it)

(I_RESULT_WAIT,
 StartTimerI(
 IncRCRI(it)))

InvokePDU {RID=T,
UP=#Uack(it)}

AckPDU {RID=T,
TveTok=T}(I_RESULT_WAIT,it)

(I_RESULT_WAIT,it)

(I_RESULT_RESP_WAIT,
 StartTimerI(it))

ResultPDU result

(I_RESULT_WAIT,it) AbortPDU abort

(I_RESULT_WAIT,
 StartTimerI(
 IncRCRI(it)))

AbortPDU abort

ResultPDU result(I_RESULT_WAIT,it)

(I_RESULT_RESP_WAIT,
 StartTimerI(it))

(I_RESULT_WAIT,it)
AckPDU {RID=F,
TveTok=T}

(I_RESULT_WAIT,
 StartTimerI(
 IncRCRI(
 SetAckSentI(it))))

AckPDU ack

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

InvokePDU invoke

(I_RESULT_WAIT,it)

(I_NULL,
 ClearInitI(it))

(I_RESULT_WAIT,it)

(I_NULL,
 ClearInitI(it))

InvokePDU invoke

Figure 7.9: I RESULT WAIT page in the TR-Protocol CPN

119

Listing 7.5: Constants used in the TR-Protocol declarations

1 val RCRImax = 1;

2 val RCRRmax = 1;

Each TR-PE uses a constant representing the maximum value of the counter RCR.

The constants are identi�ed with the letter I for the TR-Init-PE (RCRImax) or letter R

for the TR-Resp-PE (RCRRmax). As the maximum counter values do not change during

a transaction, we chose to model them as constants, as opposed to using places with

tokens representing the values. Chapter 8 discusses the analysis of the TR-Protocol CPN

using di�erent values of these constants.

The time-out transitions on the I RESULT WAIT page compare the value of RCR

in the transaction data to the constant RCRImax. If the two are equal (transition

TimerTO R Max), then the TR-Init-PE has already re-transmitted the maximum num-

ber of times, and must abort the transaction. If RCR is less than RCRImax then a

re-transmission occurs upon a time-out. If the TR-Init-PE has previously received an

Ack(Tve) PDU and subsequently sent an Ack(Tok) PDU, then the Ack(Tok) PDU is

re-sent (transition TimerTO R Tve). The TR-Init-PE knows an Ack(Tok) PDU was pre-

viously sent because the AckSent ag is set. Upon re-sending the Ack(Tok) PDU, the

TR-Init-PE increments RCR, starts the timer and remains in the I RESULT WAIT state.

If AckSent was not set, then the TR-Init-PE re-transmits the Invoke PDU (transition

TimerTO R) that was initially sent when the TR-Init-User submitted the TR-Invoke.req

primitive (Invoke req on page I NULL). Again, the TR-Init-PE increments RCR, starts

the timer and remains in the I RESULT WAIT state. The RID header �eld of both re-

transmitted PDUs is set to T.

It is not necessary to model the cases where RCR is greater than its maximum value

because it is initially less than or equal to its maximum, and every transition that in-

creases RCR (by 1) can only occur if RCR is less than RCRImax.

The remaining �ve transitions on the I RESULT WAIT page model the receipt of

PDUs from the TR-Resp-PE. If the TR-Init-PE receives an Ack(Tve) PDU while in

the I RESULT WAIT state, the transaction is outstanding and so an Ack(Tok) PDU is

sent in reply to the TID veri�cation. Transition RcvAck Tve models this case. Note that

the guard speci�es RCR in the transaction data must be less than RCRImax. This models

the �x introduced to limit RCR as discussed in Assumption 7.7 and accepted by the WAP

Forum [55].

The receipt of an Ack PDU is modelled by transition RcvAck Cnf. The TR-Init-PE

remains in the I RESULT WAIT state, sets HoldOn to T and stops the timer. A TR-

Invoke.cnf primitive is also delivered to the TR-Init-User.

The receipt of a Result PDU when HoldOn is T is modelled by transition RcvResult.

A TR-Result.ind primitive is delivered to the TR-Init-User and the TR-Init-PE enters

120

the I RESULT RESP WAIT state. Note that Entry 9 in Table B.2 states the timer is

stopped, a TR-Result.ind primitive is generated and then the timer is started with the

interval A. As we are modelling the entries as atomic events (Assumption 7.1) and the

timer actions are ordered (Assumption 7.3), we only apply the function StartTimerI() on

the transaction data.

Transition RcvResult Cnf models Entry 10 in Table B.2. This is a substitution transi-

tion whose sub-page is I RW RcvResult Cnf. Entry 10 is modelled di�erently from other

entries because two primitives are delivered to the TR-Init-User. We leave the discussion

of this until Section 7.7.

The �nal transition on the I RESULT WAIT page is RcvAbort. This models the receipt

of an Abort PDU which signals the delivery of a TR-Abort.ind primitive to the TR-Init-

User and returns the TR-Init-PE to the I NULL state.

From the I RESULT WAIT page, we see how the choice of Standard ML constructs for

the PDUs (see Listing 7.2) results in a clear and consistent approach for the inscriptions

specifying the sending and receiving of PDUs.

The I RESULT WAIT page does not model Entry 5 of the TR-Init-PE RESULT WAIT

state table (Table B.2). The event of this entry is the receipt of an erroneous PDU. This

event is not modelled because we assume illegal PDUs are not possible (Restriction 7.3).

This applies for all state tables that have similar entries.

7.6.4 I RESULT RESP WAIT

The I RESULT RESP WAIT page is shown in Figure 7.10. This page models the TR-Init-

PE waiting for the TR-Init-User to acknowledge the receipt of the result (see Table B.3).

There are �ve transitions, two of which model a time-out occurring when the timer

interval A is used. This interval, and the corresponding counter AEC, is used (when

UserAck is On) to determine the length of time a TR-PE waits for an acknowledgment

from the TR-User before aborting a transaction. As a time-out with interval A (when

AEC is less than its maximum value) only increments AEC (e.g. no PDUs are sent, the state

name is not changed|see Entry 7 of Table B.3), AEC MAX acts simply as a multiple of

the interval A. Rather than modelling AEC explicitly, non-determinism is used. Either a

time-out with interval A occurs when AEC is at its maximum (AEC MAX), hence causing the

transaction to be aborted, or the timer is still running (providing it hasn't been stopped

by other events). Transition TimerTO A Max models a time-out when AEC MAX is reached

(Entry 8, Table B.3). Note that a TR-Abort.ind primitive is delivered to the TR-Init-

User (see Assumption 7.8). There is no transition modelling Entry 7 of Table B.3. This

design decision is made to simplify the analysis, so that the results will be independent of

the value of AEC MAX. (Such an abstraction is not used for RCR MAX because a time-out on

121

interval R triggers PDUs to be sent. These PDUs impact other parts of the TR-Protocol.

If these time-outs (e.g. transition TimerTO R on page I RESULT WAIT (Figure 7.9)) were

modelled non-deterministically, then there would be no limit on the number of PDUs

sent, most likely resulting in an in�nite state space. Modelling RCR explicitly, allows

a practical bound to be placed on the state space. Chapter 9 discusses the impact of

RCR MAX on the size of the state space.)

When UserAck is O�, it is not necessary to wait for the TR-Init-User to respond.

When the time-out occurs (transition TimerTO A O�), an Ack PDU is sent to the TR-

Resp-PE to indicate the Result PDU has been received. The TR-Init-PE does not wait

for the submission of the TR-Result.res primitive from the TR-Init-User, but enters the

I WAIT TIMEOUT state and starts the timer (with interval W).

Initiator

InitState

P I/O

RespToInit

PDU

P In

PDU

InitToResp

P Out

Result_res

RcvAbort

Abort_req

[#Uack(it)
andalso #Timer(it)]

TimerTO_A_Max

TimerTO_A_Off

[not(#Uack(it))
andalso #Timer(it)]

(TR-Abort.ind)

(TR-Abort.ind)

1/2

3

4

8

9

(TR-Abort.req)

(TR-Result.res)

(I_RESULT_RESP_WAIT,it)

(I_RESULT_RESP_WAIT,it)

(I_RESULT_RESP_WAIT,it) AbortPDU abort

AbortPDU abort

(I_WAIT_TIMEOUT,
 StartTimerI(it))

AckPDU {RID=F,
TveTok=F}

(I_RESULT_RESP_WAIT,it) AbortPDU abort

AckPDU {RID=F,
TveTok=F}

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

(I_WAIT_TIMEOUT,
 StartTimerI(it))

(I_RESULT_RESP_WAIT,it)

Figure 7.10: I RESULT RESP WAIT page in the TR-Protocol CPN

The Abort req and RcvAbort transitions model the same behaviour as those with the

same name on the I RESULT WAIT page. Transition Result res models the TR-Init-User

submitting the TR-Result.res primitive, which signals an Ack PDU is to be sent to the

TR-Resp-PE and the TR-Init-PE to enter the I WAIT TIMEOUT state. Both Entries 1

and 2 of Table B.3 are modelled by Result res because the ExitInfo parameter of the

TR-Result.res primitive is not modelled (Simpli�cation 7.3).

The I RESULT RESP WAIT state table does not model Entry 6 of the TR-Init-PE

RESULT RESP WAIT state table (Table B.3), as it is an ignore entry.

122

7.6.5 I WAIT TIMEOUT

The I WAIT TIMEOUT page is shown in Figure 7.11. This page models the TR-Init-

PE storing the transaction data in case the Ack PDU needs to be re-transmitted (see

Table B.4). There are four transitions on this page.

PDU

InitToResp

P Out

RespToInit

PDU

P In

Clear

RcvAbort

Initiator

InitState

P I/O

TimerTO_W

[#Timer(it)]

RcvResult

[result]

7

2/3

4

6

(TR-Abort.ind)

(I_WAIT_TIMEOUT,it)

(I_WAIT_TIMEOUT,it) AbortPDU abort

(I_WAIT_TIMEOUT,it)

(I_WAIT_TIMEOUT,it)

AckPDU {RID=T,
TveTok=F}

ResultPDU result

(I_WAIT_TIMEOUT,it)

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

Figure 7.11: I WAIT TIMEOUT page in the TR-Protocol CPN

Transition RcvResult models the TR-Init-PE receiving a re-transmitted Result PDU

(recall from Listing 7.2 that the variable result is used to identify the only header �eld

modelled in the Result PDU, RID). An Ack PDU is re-transmitted and the TR-Init-PE

remains in the I WAIT TIMEOUT state. Both Entries 2 and 3 of Table B.4 are modelled

by RcvResult because the ExitInfo option is not modelled (Simpli�cation 7.3).

Transition TimerTO W models a time-out with interval W occurring. The action

speci�ed in the state table (Entry 6, Table B.4) is to clear the transaction. We interpret

this as meaning clear all data for this transaction. This is performed using the function

ClearInitI(), and the TR-Init-PE enters the I NULL state.

Transitions Clear and RcvAbort model Entries 7 and 4 of Table B.4, respectively.

However, they also incorporate the changes speci�ed in Table 7.8. Neither of these

transitions model service primitives occurring, as the original state table indicated.

Entry 1 in the WAIT TIMEOUT state table (Table B.4) is not modelled by a tran-

sition because it only speci�es the TR-Init-PE to ignore the Result PDU. Entry 5 is not

modelled by a transition because error PDUs cannot be received.

7.6.6 R LISTEN

The R LISTEN page is shown in Figure 7.12. This page models the TR-Resp-PE ready

to accept transactions. There are two transitions and one new place named First. The

123

TR-Resp-PE is initially in the R LISTEN state, so transitions on this page will be the

�rst to occur in the TR-Resp-PE state table pages. The page plays a similar role to the

I NULL page for the TR-Init-PE. It models entries in the LISTEN state table (Table B.5).

InitToResp

PDU

P In

RespToInit

PDU

P Out

Responder

RespState

P I/O

RcvInvoke_Fail

RcvInvoke

Flag

First T

(TR-Invoke.ind) 1/2

3

InvokePDU invoke

InvokePDU invoke

(R_INVOKE_RESP_WAIT,
 StartTimerR(
 AssignUackR(rt,#UP(invoke))))

AckPDU {RID=F,
 TveTok=T}

(R_LISTEN,rt)

(R_TIDOK_WAIT,
 AssignUackR(rt,#UP(invoke)))

(R_LISTEN,rt)

T

TorF

F

F

Figure 7.12: R LISTEN page in the TR-Protocol CPN

Transition RcvInvoke models the receipt of an Invoke PDU with a valid TID (Entries

1 and 2). The two entries are modelled by one transition because they are only di�er-

entiated by the value of the U/P ag, which is set in the transaction data to the value

of the UP header �eld in the Invoke PDU. A TR-Invoke.ind primitive is delivered to the

TR-Resp-User and the TR-Resp-PE enters the R INVOKE RESP WAIT state with the

timer started (using interval A). The marking of First must also be 1`T for RcvInvoke to

be enabled. First always has the initial marking of 1`T.

Transition RcvInvoke Fail models the receipt of an Invoke PDU with an invalid TID

(Entry 3). The TR-Resp-PE initiates TID veri�cation by sending an Ack(Tve) PDU

and entering the R TIDOK WAIT state. The place First also places a condition on the

enabling of RcvInvoke Fail.

As stated in Simpli�cation 7.6, a speci�c mechanism for determining if a TID is valid is

not modelled. Instead, on the receipt of the �rst Invoke PDU an arbitrary choice is made

on the validity of the TID (i.e. RcvInvoke or RcvInvoke Fail could occur). However, after

the �rst Invoke PDU has been received, any re-transmitted Invoke PDUs received by the

TR-Resp-PE while in the R LISTEN state must have invalid TIDs (i.e. TID veri�cation is

initiated). Suppose a caching mechanism is used, then the TID of the �rst Invoke PDU

would be stored in cache. A test on the following Invoke PDUs with the same TID must

indicate an invalid TID1. If no caching mechanism is used, then every TID will be invalid.

Place First ensures that, after the �rst Invoke PDU is received (transition RcvInvoke or

RcvInvoke Fail occur), all subsequent Invoke PDUs have invalid TIDs, therefore, initiating

TID veri�cation (only transition RcvInvoke Fail is enabled). Note that the inscription on

1This assumes the caching mechanism and TID test implemented does ensure invalid TIDs are de-
tected. This follows from the discussion in Section 7.2.1 and Simpli�cation 7.4.

124

the arc from First to RcvInvoke Fail, TorF, is a variable of type Flag. The marking of First

can be T or F for RcvInvoke Fail to be enabled (providing the other enabling conditions

of the transition are satis�ed).

The receipt of PDUs that are ignored (Ack and Abort) are again not modelled. Entry 4

in the LISTEN state table (Table B.5) is not modelled by a transition because error PDUs

cannot be received.

7.6.7 R TIDOK WAIT

The R TIDOK WAIT page is shown in Figure 7.13. This page models the TR-Resp-

PE waiting for a response from the TR-Init-PE after initiating TID veri�cation (see

Table B.6). There are three transitions on this page.

Responder

RespState

P I/O

RcvAck

[#TveTok(ack)]

RcvAbort

InitToResp

PDU

P In

RcvInvoke

[#RID(invoke)]

RespToInit

PDU

P Out

1

3

5

(TR-Invoke.ind)
(R_INVOKE_RESP_WAIT,
 StartTimerR(rt))

(R_TIDOK_WAIT,rt)

AckPDU ack

AbortPDU abort

(R_TIDOK_WAIT,rt)

(R_LISTEN,
 ClearRespR(rt))

InvokePDU invoke (R_TIDOK_WAIT,rt)

(R_TIDOK_WAIT,rt)AckPDU {RID=T,
TveTok=T}

Figure 7.13: R TIDOK WAIT page in the TR-Protocol CPN

Transition RcvAck models the receipt of an Ack(Tok) PDU (i.e. a positive response

to TID veri�cation). This stimulates the delivery of the TR-Invoke.ind primitive to the

TR-Resp-User. The TR-Resp-PE enters the R INVOKE RESP WAIT state and proceeds

with the transaction with the acknowledgment timer on.

Transition RcvAbort models the receipt of an Abort PDU which terminates the trans-

action. A TR-Abort.ind primitive is not delivered to the TR-Resp-User because a TR-

Invoke.ind has not yet been delivered (i.e. the TR-Resp-User does not know a transaction

was initiated).

Transition RcvInvoke models the receipt of a re-transmitted Invoke PDU. The TR-

Resp-PE re-transmits the Ack(Tve) PDU and remains in the R TIDOK WAIT state.

As already discussed, Entry 4 in the TIDOK WAIT state table (Table B.6) is not

modelled by a transition because it only speci�es the TR-Resp-PE to ignore the Invoke

PDU. Entry 2 is not modelled by a transition because error PDUs cannot be received.

125

7.6.8 R INVOKE RESP WAIT

The R INVOKE RESP WAIT page is shown in Figure 7.14. This page models the TR-

Resp-PE waiting for the TR-Resp-User to acknowledge receipt of the Invoke PDU (see

Table B.7). There are six transitions, two of which model the expiration of the acknowl-

edgment timer. Transitions TimerTO A Max and TimerTO A O� model the time-outs

in a similar way to the transitions of the same name on the I RESULT RESP WAIT

page. Again, AEC and AEC MAX are not explicitly modelled, meaning Entry 7 of Ta-

ble B.7 does not have a corresponding transition. Note that the occurrence of transition

TimerTO A Max signals the delivery of a TR-Abort.ind primitive to the TR-Resp-User.

This implements the change given by Table 7.6.

InitToResp

PDU

P In

RespToInit

PDU

P Out

Responder

RespState

P I/O

RcvAbort

Abort_req

Invoke_res

[#Uack(rt)
andalso #Timer(rt)]

TimerTO_A_Max

TimerTO_A_Off

[not(#Uack(rt))
andalso #Timer(rt)]

Result_req

[not(#Uack(rt))]

(TR-Abort.ind)

(TR-Abort.ind)

1

2

3

4

8

9

(TR-Invoke.res)

(TR-Abort.req)

(TR-Result.req)

(R_INVOKE_RESP_WAIT,rt)

(R_LISTEN,
 ClearRespR(rt))

(R_INVOKE_RESP_WAIT,rt)AbortPDU abort

(R_INVOKE_RESP_WAIT,rt)

(R_INVOKE_RESP_WAIT,rt)

(R_RESULT_WAIT,
 SetAckSentR(
 StopTimerR(rt)))

AbortPDU abort

AckPDU {RID=F,
TveTok=F}

(R_RESULT_WAIT,
 StartTimerR(rt))

(R_LISTEN,
 ClearRespR(rt))

(R_INVOKE_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,
 StartTimerR(
 ResetRCRR(rt)))

ResultPDU F

AbortPDU abort

(R_INVOKE_RESP_WAIT,rt)

(R_LISTEN,
 ClearRespR(rt))

Figure 7.14: R INVOKE RESP WAIT page in the TR-Protocol CPN

Transitions RcvAbort and Abort req model behaviour in a similar way to the tran-

sitions of the same name on the I RESULT WAIT page. The TR-Resp-PE enters the

R LISTEN state and clears the transaction data using the function ClearRespR() when

the transaction is aborted. Similar transitions are also included on the R RESULT WAIT

and R RESULT RESP WAIT pages.

Transition Invoke res models the TR-Resp-User submitting the TR-Invoke.res primi-

126

tive. The timer is started and the TR-Resp-PE enters the R RESULT WAIT state.

Transition Result req models the TR-Resp-User submitting the TR-Result.req primi-

tive which causes a Result PDU (with RID set to F) to be sent to the TR-Init-PE, and

the timer to be started. The TR-Resp-PE enters the R RESULT RESP WAIT state. Note

that this transition can only occur when UserAck is O� (see Assumption 7.9).

Entry 5 in the INVOKE RESP WAIT state table (Table B.7) is not modelled by a

transition because it only speci�es the TR-Resp-PE to ignore the Invoke PDU. Entry 6

is not modelled by a transition because error PDUs cannot be received.

7.6.9 R RESULT WAIT

The R RESULT WAIT page is shown in Figure 7.15. This page models the TR-Resp-

PE waiting for the TR-Resp-User to submit the result (see Table B.8). There are �ve

transitions, two of which model the same behaviour as RcvAbort and Abort req on the

R INVOKE RESP WAIT page.

RespToInit

PDU

P Out

Responder

RespState

P I/O

RcvAbort

Abort_req

Result_req

TimerTO_A

[#Timer(rt)]

InitToResp

PDU

P In
RcvInvoke

[#AckSent(rt)
andalso
#RID(invoke)]

(TR-Abort.ind)

1

4

6

7

8

(TR-Abort.req)

(TR-Result.req)

(R_RESULT_WAIT,rt)

(R_RESULT_RESP_WAIT,
 StartTimerR(
 ResetRCRR(rt)))

(R_RESULT_WAIT,rt)

(R_RESULT_WAIT,rt)

(R_RESULT_WAIT,rt)

ResultPDU F

AbortPDU abort

AckPDU {RID=F,
TveTok=F}

(R_RESULT_WAIT,
 StopTimerR(
 SetAckSentR(rt)))

AbortPDU abort

(R_LISTEN,
 ClearRespR(rt))

(R_LISTEN,
 ClearRespR(rt))

(R_RESULT_WAIT,rt)InvokePDU invoke

(R_RESULT_WAIT,rt)AckPDU {RID=T,
TveTok=F}

Figure 7.15: R RESULT WAIT page in the TR-Protocol CPN

Transition Result req models the same behaviour as the transition with the same name

on the R INVOKE RESP WAIT page. However, UserAck can now also be O�.

Transition TimerTO A models a time-out with interval A. An Ack PDU is sent

acknowledging the Invoke PDU. If a re-transmitted Invoke PDU is received in the

R RESULT WAIT state and an Ack PDU has already been sent (transition RcvInvoke),

127

then the Ack PDU is re-transmitted.

Entries 2 and 3 in the RESULT WAIT state table (Table B.8) are not modelled by a

transition because they only specify the TR-Resp-PE to ignore the Invoke PDU. Entry 5

is not modelled by a transition because error PDUs cannot be received.

7.6.10 R RESULT RESP WAIT

The R RESULT RESP WAIT page is shown in Figure 7.16. This page models the TR-

Resp-PE waiting for the TR-Init-PE to acknowledge the Result PDU (see Table B.9).

There are �ve transitions, two of which model the same behaviour as RcvAbort and

Abort req on the R INVOKE RESP WAIT page.

RespToInit

PDU

P Out

Responder

RespState

P I/O

RcvAbort

Abort_req

RcvAck_Cnf

[not(#TveTok(ack))]

[#RCR(rt)=RCRRmax
andalso #Timer(rt)]

TimerTO_R_Max

TimerTO_R

[#RCR(rt)<RCRRmax
andalso #Timer(rt)]

InitToResp

PDU

P In

(TR-Abort.ind)

(TR-Abort.ind)

(TR-Result.cnf)

2

3

6

5

1(TR-Abort.req)

(R_RESULT_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,rt)
AbortPDU abort

(R_RESULT_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,
 StartTimerR(
 IncRCRR(rt)))

ResultPDU T

AckPDU ack

AbortPDU abort

(R_LISTEN,
 ClearRespR(rt))

(R_LISTEN,
 ClearRespR(rt))

(R_LISTEN,
 ClearRespR(rt))

(R_LISTEN,
 ClearRespR(rt))

Figure 7.16: R RESULT RESP WAIT page in the TR-Protocol CPN

Transitions TimerTO R Max and TimerTO R model the expiration of the re-

transmission timer in a similar manner to the transitions of the same name on page

I RESULT WAIT. If RCR is less than RCRRmax, then the Result PDU is re-transmitted

and RCR incremented (transition TimerTO R). If RCR is equal to RCRRmax, then the

transaction is aborted (transition TimerTO R Max).

Transition RcvAck Cnf models the receipt of an Ack PDU from the TR-Init-PE and

signals the delivery of the TR-Result.cnf primitive to the TR-Resp-User. (Note that an

Ack(Tok) PDU is ignored|see Assumption 7.5.) The transaction is completed, and the

TR-Resp-PE returns to the R LISTEN state, with all transaction data cleared.

Entry 4 in the RESULT RESP WAIT state table (Table B.9) is not modelled by a

transition because error PDUs cannot be received.

128

7.6.11 I ABORT and R ABORT

The I ABORT and R ABORT pages are shown respectively in Figures 7.17 and 7.18.

These pages model the T-Service-Provider initiating aborts. They di�er from the other

state table pages, which model speci�c state tables from the WTP Speci�cation [183].

Initiator

InitState

P I/O

ProviderAbort

[isn<>I_NULL]
(TR-Abort.ind*)

(I_NULL,
 ClearInitI(it))

(isn,it)

Figure 7.17: I ABORT page in the TR-Protocol CPN

Responder

RespState

P I/O

ProviderAbort

[rsn<>R_LISTEN]
(TR-Abort.ind*)

(rsn,rt)

(R_LISTEN,
 ClearRespR(rt))

Figure 7.18: R ABORT page in the TR-Protocol CPN

Transition ProviderAbort models an abort initiated by the T-Service-Provider, and

being delivered to the TR-Init-User. The combination of the input arc and guard of

this transition means it is enabled when the TR-Init-PE is in any state except I NULL.

A provider abort cannot occur while the TR-Init-PE is in the I NULL state because

either the transaction has not started, or the transaction has been completed. When

ProviderAbort occurs, the TR-Init-PE aborts the transaction and enters the I NULL state.

The transaction data is reset to its default value by the function ClearInitI(). An asterisk

is given inside the transition to indicate the delivery of the TR-Abort.ind primitive to the

TR-Init-User is conditional. In this case, the TR-Abort.ind primitive will be delivered

in all cases, except when the TR-Init-PE is in the I WAIT TIMEOUT state (recall from

Section 7.6.5 that primitives are not delivered to the TR-Init-User in this state). As

the delivery of primitives to TR-Users is not modelled explicitly, the conditions are not

included in the TR-Protocol CPN. Instead, the condition is given when we specify the

mapping of binding elements to service primitives. This information is used in the analysis

when calculating the TR-Protocol language (Chapter 8).

We chose to model the ProviderAbort transition on a sub-page to maintain consistency

with all other pages in the hierarchy. Alternatively, the actual transition could have been

included on the TR Init PE page (instead of the substitution transition I ABORT).

There is only one transition on the R ABORT page. This transition, ProviderAbort,

models a T-Service-Provider initiated abort being delivered to the TR-Resp-User. It is

similar to the transition of the same name on the I ABORT page. It is enabled in any

state except R LISTEN. The TR-Abort.ind primitive is not delivered to the TR-Resp-

User in the R TIDOK WAIT state because the TR-Invoke.ind primitive has not yet been

delivered. This will become apparent in Chapter 8.

129

7.7 Multiple Primitives Page

The state table entries have so far been modelled as transitions which represent atomic

events (Assumption 7.1). When an entry event is the submission of a service primitive

by a TR-User, then the transition is named with that service primitive. When an entry

action is the delivery of a service primitive to a TR-User, then the transition is given

a label (in parenthesis) with that service primitive. This allows each primitive to be

directly associated with an individual transition, and hence an arc in the state space.

This is an important requirement when performing language analysis, because arcs in

the state space are mapped to primitives in the TR-Protocol language. Further details

on the mapping process are given in Chapter 8.

Entry 10 of the TR-Init-PE RESULT WAIT state table (Table B.2) is the only entry

that cannot be modelled as a single transition. This is because it speci�es two primitives

(TR-Invoke.cnf and TR-Result.ind) to be delivered to the TR-Init-User. If this was

modelled as a single transition, then the two primitives could not be di�erentiated when

selecting arcs in the state space. Therefore, this action is decomposed into a sub-page (the

only fourth level page) of transition RcvResult Cnf (Figure 7.9) that contains a transition

for each primitive. This sub-page, called I RW RcvResult Cnf, is shown in Figure 7.19.

Initiator

InitState

P I/O

RespToInit

PDU

P In

Invoke_cnf
[not(#HoldOn(it))]

Result_ind

TempStateITransData

(TR-Invoke.cnf)

(TR-Result.ind)

(I_RESULT_WAIT,it) ResultPDU result

it

it
(I_RESULT_RESP_WAIT,
 StartTimerI(it))

Figure 7.19: I RW RcvResult Cnf page in the TR-Protocol CPN

On receipt of the Result PDU, a TR-Invoke.cnf primitive is delivered to the TR-

Init-User (transition Invoke Cnf). The transaction data taken from place Initiator is tem-

porarily stored in place TempState. After Invoke cnf occurs, there is no token in the place

Initiator, therefore, disabling all transitions on the TR-Init-PE pages. This stops the TR-

Init-PE from processing anything related to the state tables (although the TR-Resp-PE

can still proceed). Transition Result ind can occur, modelling the delivery of the TR-

Result.ind primitive to the TR-Init-User. The output arc of this transition deposits a to-

ken in the Initiator place. This models the TR-Init-PE entering the I RESULT RESP WAIT

state with the acknowledgment timer started, allowing the TR-Init-PE to proceed as nor-

mal.

130

Chapter 8

Transaction Protocol Analysis

The Coloured Petri net in Chapter 7 models the Transaction Protocol described in the

WTP Speci�cation [183], with several small modi�cations. The CPN is now used as the

basis for analysis. The state space of the Transaction Protocol (TR-Protocol) CPN can be

calculated, allowing several properties of the TR-Protocol to be proved. The state space

is also used to calculate the TR-Protocol language, the sequences of service primitives

generated by the TR-Protocol. By comparing this language with the TR-Service language

in Chapter 6, we can determine if the TR-Protocol provides the required service.

We divide the analysis of the TR-Protocol into two chapters. In this chapter we

focus on the analysis of the TR-Protocol de�ned by the CPN in Chapter 7. This analysis

reveals errors in the TR-Protocol to which we propose solutions. The set of modi�cations

leads to a Revised TR-Protocol and corresponding CPN model. In Chapter 9 we analyse

the Revised TR-Protocol, and show that it satis�es the desired properties.

The main purpose of the analysis is to verify that the TR-Protocol provides the TR-

Service. State space analysis is also used to increase our con�dence that the TR-Protocol

operates correctly. Section 8.1 states the desired properties of the TR-Protocol CPN. The

analysis environment is described in Section 8.2. Section 8.3 gives the parameter values

chosen, and the corresponding state space and language results, for the con�guration of

the TR-Protocol that conveniently illustrates the errors found. The errors are described

in Sections 8.4 to 8.6. For each error found, we propose a change to the TR-Protocol,

and show how that change is reected in our TR-Protocol CPN. Only a brief description

of the changes to the TR-Protocol CPN is given, as the full Revised TR-Protocol CPN

is shown in Appendix E.

8.1 Desired Properties of the Transaction Protocol

The main property of interest is that the TR-Protocol provides the TR-Service. That is,

the sequences of service primitives that occur when the TR-Protocol is used, is identical

131

to the sequences of service primitives de�ned in the TR-Service. This requirement is

stated in Property 8.1:

Property 8.1 (Re�nement of TR-Service). The TR-Protocol language must be iden-

tical to the TR-Service language.

Section 8.2 explains how the TR-Protocol language is obtained and compared with

the TR-Service language given in Chapter 6.

The terminal markings of the TR-Protocol state space de�ne the state of the TR-

Protocol when a transaction is complete. Property 8.2 de�nes the required terminal

markings.

Property 8.2 (Successful Termination). The terminal markings of the TR-Protocol

state space are dead markings of the form of the marking given in Table 8.1 or of the

markings given in Table 8.2.

Place Marking

UserAck empty
First 1`T
TempState empty
Initiator 1`(I NULL,<default>)
Responder 1`(R LISTEN,<default>)
InitToResp empty
RespToInit empty

Table 8.1: Desired terminal marking indicating successful termination of the TR-Protocol

when the original Invoke PDU has not been received by the TR-Resp-PE

Place Marking

UserAck empty
First 1`F
TempState empty
Initiator 1`(I NULL,<default>)
Responder 1`(R LISTEN,<default>)
InitToResp <don't care>
RespToInit <don't care>

Table 8.2: Desired set of terminal markings indicating successful termination of the TR-

Protocol when the original Invoke PDU has been received by the TR-Resp-PE

The terminal marking in Table 8.1 is for the special case when the TR-Init-User

submits a TR-Abort.req or the T-Service-Provider delivers a TR-Abort.ind (to the TR-

Init-User) before the original Invoke PDU is sent by the local host of the TR-Init-PE (see

Section 7.6.3). The set of terminal markings in Table 8.2 is for all cases when the Invoke

PDU has been received by the TR-Resp-PE.

When Invoke req on page I NULL (Figure 7.8) occurs, the only token in UserAck is

removed. No transitions deposit tokens in UserAck. Thus it will be empty on termination.

132

The place First (Figure 7.12) is initially marked with 1`T indicating an Invoke PDU

has not been received by the TR-Resp-PE. For the special case (Table 8.1) the marking of

First must remain 1`T. For the general case (Table 8.2) after an Invoke PDU is received,

First will always be marked with 1`F.

Both of the TR-PEs must return to their initial state upon completion of a transaction.

The TR-Init-PE should be in the I NULL state, and the place TempState (Figure 7.19)

should be empty. The TR-Resp-PE must be in the R LISTEN state. The transaction

data of each TR-PE must be equal to the default values, which are speci�ed in the initial

markings (Figures 7.6 and 7.7).

For the special case (Table 8.1), there must be no tokens in the communication places,

InitToResp and RespToInit (Figure 7.5). For the general case (Table 8.2), the marking of

the communication places can take a range of values for the expected terminal markings.

This is because we have modelled the TR-Protocol so that PDUs that are ignored during

the transaction will remain in the communication channel. Section 7.6.1 discusses the

justi�cation for this modelling decision. Although we do not care about the terminal

markings of the communication places, in Chapter 9 we measure and discuss the upper

bounds on these places, i.e. the maximum number of PDUs that are in the communication

channel.

It follows from Property 8.2 that any dead markings that are not terminal markings

are undesirable, i.e. deadlocks.

As well as having no deadlocks, the TR-Protocol CPN should not be able to enter a

sequence of occurrences that cannot end, i.e.:

Property 8.3 (Absence of Livelocks). There must be no livelocks in the state space

of the TR-Protocol.

As discussed in Chapter 4, if the state space is isomorphic to the SCC Graph and

contains no self loops (which is true for the TR-Protocol, because there are no transitions

that do not change the marking of the CPN), then it also has no livelocks. This property

is used to prove there are no livelocks (in this chapter, and Chapter 9).

Dead transitions in the TR-Protocol state space may mean a state table entry is

redundant or that unexpected behaviour has occurred, resulting in that entry not being

utilized. However, we also expect transitions that model protocol features that are not

activated for a particular set of initial parameter values to be dead.

Property 8.4 (Absence of Unexpected Dead Transitions). There must be no

dead transitions in the TR-Protocol state space, unless those transitions model features

that are not activated because of the choice of initial parameters values (see Table 8.3).

The �rst four transitions listed in Table 8.3 model a time-out when either User-

Ack is On or O�. Therefore, they will be dead when UserAck is O� (transitions 1

133

No. Condition Dead Transition Page

1 UserAck O� TimerTO A Max I RESULT RESP WAIT
2 R INVOKE RESP WAIT
3 UserAck On TimerTO A O� I RESULT RESP WAIT
4 R INVOKE RESP WAIT
5 Result req R INVOKE RESP WAIT
6 RCRRmax=0 TimerTO R R RESULT RESP WAIT
7 RcvResult I WAIT TIMEOUT
8 RCRImax=0 TimerTO R I RESULT WAIT
9 RcvAck Tve I RESULT WAIT
10 RcvAck R TIDOK WAIT
11 RcvInvoke R TIDOK WAIT
12 R RESULT WAIT
13 RCRImax�1 TimerTO R Tve I RESULT WAIT

Table 8.3: Conditions for a dead transition in the TR-Protocol CPN

and 2) or On (transitions 3 and 4), respectively. Likewise, transition Result req on the

R INVOKE RESP WAIT page (Figure 7.14) can only occur when UserAck is O�.

When the maximum value of RCR is initially 0, the transitions that model the incre-

menting of this counter will be dead. These are transitions 6 and 8 (transition 7 cannot

occur because it models the receipt of a re-transmitted Result PDU). Although the sce-

nario of using an initial counter value of 0 is unlikely (the eÆciency of the protocol will

be poor), from the WTP Speci�cation [183] it is possible.

Transitions 9 to 13 are all dead when RCRImax is 0. An Ack(Tok) (transition 9) or

re-transmitted Invoke PDU (transition 8) cannot be sent when RCRImax is 0. There-

fore, the TR-Resp-PE cannot receive these PDUs (transitions 10, 11 and 12). The

TimerTO R Tve transition on page I RESULT WAIT can only occur after an Ack(Tok)

has been sent, and when RCR<RCRImax. Therefore, it is dead when RCRImax=0, and

also when RCRImax=1, since the sending of the original Ack(Tok) PDU increments RCR.

Proving these four properties of the TR-Protocol, and in particular Property 8.1, will

provide a high level of con�dence that the TR-Protocol operates correctly.

8.2 Analysis Parameters and Recording of Results

The analysis of the TR-Protocol involves selecting values for a set of parameters and

recording the state space and language results. Section 8.2.1 lists the parameters of the

TR-Protocol CPN. Section 8.2.2 describes the statistics recorded and Section 8.2.3 gives

the setup of the hardware the analysis is performed on.

8.2.1 Parameters of the TR-Protocol CPN

The analysis results presented in this chapter relate to the TR-Protocol CPN described

in Chapter 7. There are three parameters used in the CPN (the �rst two are from the

134

declarations in Listing 7.5):

1. RCRImax: The maximum value of the counter RCR at the TR-Init-PE.

2. RCRRmax: The maximum value of the counter RCR at the TR-Resp-PE.

3. UserAck: The initial marking of UserAck1 (Figure 7.8). This indicates whether

UserAck is O� (F) or On (T).

Hereafter, we will distinguish the parameters using italics. The values of the pa-

rameters de�ne the Con�guration of the current CPN model. For brevity, we may refer

to a Con�guration by the values the parameters take, ordered as in the above list, e.g.

Con�g 1-2-T. As discussed in Chapter 4, a limitation of state space analysis is that it is

dependent on the initial parameter values. For our TR-Protocol CPN, where there are

an in�nite number of con�gurations possible, the parameter values used must be chosen

carefully so that there is a compromise between the number of con�gurations analysed

and the level of con�dence that can be obtained from the results. At a minimum, the pa-

rameter values used should test the basic features. For example, the �rst two parameters

(the counters) test the re-transmission features of the TR-Protocol. The parameter User-

Ack tests the di�erences in behaviour when UserAck is On or O�. Section 8.3 discusses

the selection of parameter values for analysis further.

8.2.2 State Space and Language Statistics

Design/CPN version 4.0.5 [161] was used to perform the state space analysis of the

TR-Protocol CPN. Several standard properties [87] of the state space were calculated.

Design/CPN conveniently writes these properties to a report. The statistics recorded for

the state space include the number of nodes, arcs, dead markings and dead transitions

(DT). The SCC Graph was also calculated and the number of nodes and arcs recorded.

It is used to determine if any livelocks are present. A Standard ML query is written

and executed in Design/CPN to determine if the dead markings are desired (terminal

markings) or not (deadlocks). The query, given in Appendix D, returns true if all dead

markings are of the form de�ned in Property 8.2.

The FSM libraries (see Chapter 4) are used to perform language analysis on the

TR-Protocol CPN. Again, a number of statistics are recorded, including: the number of

nodes, arcs and halt states in the FSA; the number of sequences in the language; the

length of the longest and shortest sequences in the language; and the number of sequences

in the TR-Protocol language, but not in the TR-Service language (NIS), and vice versa

(NIP).

1We can omit references to the page that a place is on because the place names in the TR-Protocol
CPN are unique.

135

8.2.3 Hardware and Software Setup

All analysis was performed on a computer with speci�cations as given in Table 8.4.

Item Value

CPU Intel Celeron
Clock Speed 366MHz
RAM 512MB
Operating System Linux
OS version Slackware 7
Design/CPN version 4.0.5
FSM version 3.6
LexTools version 3.0
GraphViz version 1.5

Table 8.4: Speci�cation of hardware and software used for analysis

8.3 Con�guration of the Transaction Protocol

8.3.1 General Approach to the Analysis

Our investigation of the TR-Protocol has consisted of calculating the state space and

language for di�erent con�gurations. The approach to selecting the con�gurations was

to start with all counter parameters at 0, and then incrementing them. When it was

discovered that the properties in Section 8.1 were not true for a particular con�guration,

similar con�gurations were analysed to see which parameters, if any, have an impact on

the speci�c properties. From the inconsistencies identi�ed in the languages and state

space, and our understanding of the TR-Protocol, we suggested changes to the TR-

Protocol and performed the analysis with the changes implemented in the TR-Protocol

CPN. This process, which required a signi�cant amount of ingenuity and e�ort, was

continued until all properties of the TR-Protocol were true, and we were con�dent that

the �nal set of changes made were correct. The selection of con�gurations to give us this

con�dence is discussed further in Chapter 9.

The remainder of this Chapter presents the errors found and the suggested changes.

We use only one con�guration, described in Section 8.3.2, which illustrates all of the

errors. Chapter 9 presents the analysis results of the TR-Protocol with the suggested

changes, proving the desired properties hold for the con�gurations analysed.

8.3.2 Parameter Values

The parameter values of the con�guration analysed in the remainder of this chapter are

shown in Table 8.5. We refer to the TR-Protocol with these values as Con�guration

1. The counter parameter RCRRmax is set to 1 to allow a single re-transmission of

136

the Result PDU. RCRImax is 3 to allow for the scenario where one Invoke PDU is re-

transmitted by the TR-Init-PE (e.g. RCR=1), and an Ack(Tok) PDU is sent (which

increments RCR, i.e. RCR=2) and also re-transmitted (RCR=3). With UserAck O�, the

TR-PEs may acknowledge PDUs without waiting for a response from the TR-Users.

Parameter Value

RCRImax 3
RCRRmax 1
UserAck F

Table 8.5: Parameter values for Con�guration 1 of the TR-Protocol

Using the parameter values in Table 8.5, the initial marking of the TR-Protocol CPN

is shown in Figure 8.1.

RCRImax;
RCRRmax;

val it = 3 : int
val it = 1 : int

1
0:1

1
Responder: 1‘(R_LISTEN,{Uack = F,RCR = 0,AckSent = F,Timer = F}
TempState: empty
First: 1‘T
Initiator: 1‘(I_NULL,{Uack = F,RCR = 0,AckSent = F,HoldOn = F,
Timer = F})
RespToInit: empty
InitToResp: empty
UserAck: 1‘F

Figure 8.1: Initial marking of the TR-Protocol CPN in Con�guration 1

8.3.3 State Space and Language Statistics

The state space and SCC Graph of Con�guration 1 were calculated. The Design/CPN

report and results of the query on the dead markings are given in Appendix D. Ta-

ble 8.6 summarizes the statistics important for verifying the desired properties of the

TR-Protocol.

Nodes Arcs Terminal markings Deadlocks Livelocks DT

40386 182395 1884 0 0 2

Table 8.6: State space statistics of the TR-Protocol CPN in Con�guration 1

The size of the state space is reasonable, in terms of Design/CPN processing time

and memory consumption. Chapter 9 provides further discussion on the size of the state

space in relation to the parameter values.

The query on the dead markings (Listing D.3) shows all 1884 are desired terminal

markings (the result of the query is shown in Figure D.1). There are no livelocks in the

TR-Protocol, since the size of the SCC Graph is equal to the size of the state space (i.e.

137

the number of nodes of each graph are identical, and the number of arcs for each graph

are identical). The two dead transitions (see Listing D.2) are expected, as they are due

to the UserAck On feature not being activated in Con�guration 1 (transitions 1 and 2 in

Table 8.3). Therefore, from the state space statistics measured, there is no indication of

errors in the TR-Protocol (Properties 8.2, 8.3 and 8.4 are true).

To perform language analysis, binding elements of the TR-Protocol CPN are mapped

to service primitives, and the state space is treated as a FSA. Chapter 7 described the

correspondence of binding elements to service primitives. The functions that perform the

mapping, and convert dead markings to halt states, are given in Appendix D. Table 8.7

shows the statistics of the minimized FSA and language of the TR-Protocol.

Nodes Arcs Halts Sequences Long Short NIS NIP

61 278 6 59562 14 2 59406 26

Table 8.7: FSA and language statistics of the TR-Protocol CPN in Con�guration 1

Table 8.7 shows that there are 59406 sequences in the TR-Protocol language that are

not in the TR-Service language. These are illegal TR-Protocol primitive sequences. There

are also 26 sequences in the TR-Service language, but not the TR-Protocol language. The

following sections show that these 26 sequences are due to the same errors leading to the

illegal sequences (NIS). Although we haven't examined all illegal sequences individually,

from our inspection of some of the sequences and our experience from analysing other

con�gurations, several awk scripts [43] have been written that categorize the sequences.

The scripts, and results of their execution, are given in Appendix D. In summary, they

show that:

� 57944 of the 59406 illegal primitive sequences in the TR-Protocol language contain

two TR-Invoke.ind primitives;

� 1368 of the remaining 1462 sequences contain two TR-Invoke.cnf primitives;

� 92 of the remaining 94 sequences contain a TR-Invoke.cnf primitive, but no TR-

Invoke.res primitive; and

� the remaining 2 sequences contain a TR-Result.cnf primitive, but no TR-Result.res

primitive.

The analysis has involved investigating the TR-Protocol more closely (including in-

specting speci�c parts of the state spaces), to see where and how these illegal sequences

are generated. Sections 8.4, 8.5 and 8.6 describe the errors in the TR-Protocol that we

have found, and suggest changes to the TR-Protocol (and corresponding CPN).

138

8.4 Ambiguous Ack and Result PDUs

The �rst error evident from the analysis of the TR-Protocol is the possibility of PDUs

received by a TR-PE to be interpreted as an acknowledgment from the peer TR-User,

when only the peer TR-PE has acknowledged. The illegal sequences in the TR-Protocol

language that contain two TR-Invoke.cnf primitives lead to the identi�cation of this error.

Section 8.4.1 describes the error, using an occurrence sequence from the state space as

an example. Section 8.4.2 gives the suggested changes to �x the error, and Section 8.4.3

briey describes the corresponding changes to the CPN (a Revised TR-Protocol CPN

that includes all suggested changes is given in Appendix E). This partition into three

sub-sections will be continued in Sections 8.5 and 8.6.

8.4.1 Description and Example of the Error

Figure 8.2 shows a sequence possible in Con�guration 1 where two TR-Invoke.cnf prim-

itives are delivered to the TR-Init-User. A time sequence diagram of this occurrence

sequence is given in Figure 8.3.

1
0:1

1
Responder: 1‘(R_LISTEN,{Uack = F,RCR = 0,AckSent = F,Timer = F})
TempState: empty
First: 1‘T
Initiator: 1‘(I_NULL,{Uack = F,RCR = 0,AckSent = F,HoldOn = F,Timer = F})
RespToInit: empty
InitToResp: empty
UserAck: 1‘F

2
1:7

8
1:8

25
2:7

69
3:8

181
1:6

424
2:6

887
2:5

1:1->2
I_NULL’Invoke_req: {u=F,it={
Uack = F,RCR = 0,AckSent = F,
HoldOn = F,Timer = F}}

8:2->8
R_LISTEN’RcvInvoke: {rt={Uack =
F,RCR = 0,AckSent = F,Timer = F}
,invoke={RID = F,UP = F}}

31:8->25
R_INVOKE_RESP_WAIT’TimerTO_A_Off
: {rt={Uack = F,RCR = 0,AckSent
= F,Timer = T}}

117:25->69
I_RESULT_WAIT’TimerTO_R: {it={
Uack = F,RCR = 0,AckSent = F,
HoldOn = F,Timer = T}}

309:69->181
I_RESULT_WAIT’RcvAck_Cnf: {it={
Uack = F,RCR = 1,AckSent = F,
HoldOn = F,Timer = T},ack={RID
= F,TveTok = F}}

786:181->424
R_RESULT_WAIT’RcvInvoke: {rt={
Uack = F,RCR = 0,AckSent = T,
Timer = F},invoke={RID = T,UP =
F}}

1830:424->887
I_RESULT_WAIT’RcvAck_Cnf: {it={
Uack = F,RCR = 1,AckSent = F,
HoldOn = T,Timer = F},ack={RID
= T,TveTok = F}}

Figure 8.2: Path in the TR-Protocol (Con�guration 1) state space showing two TR-

Invoke.cnf primitives

139

TR-Invoke.cnf

TR-Invoke.cnf

TR-Invoke.ind
Invoke

RW

NU TR-Invoke.req

IRW

LI

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Time-out Time-outAck
RW

R

Invoke(RID=T)

Ack(RID=T)

A

Figure 8.3: Time sequence diagram of the TR-Protocol in Con�guration 1 showing two

TR-Invoke.cnf primitives

The scenario shown by Figures 8.2 and 8.3 starts with the TR-Init-PE in the NULL

(NU) state, and the TR-Resp-PE in the LISTEN (LI) state. A transaction is started

by the TR-Init-User submitting the TR-Invoke.req primitive. The TR-Init-PE sends an

Invoke PDU, whose receipt by the TR-Resp-PE triggers the delivery of the TR-Invoke.ind

primitive to the TR-Resp-User. The TR-Resp-PE waits for a response from the TR-

Resp-User in the INVOKE RESP WAIT (IRW) state after delivering the TR-Invoke.ind

primitive. As the response is not received within the interval A, the TR-Resp-PE sends

an Ack PDU to indicate to the TR-Init-PE that the Invoke PDU has been received.

Following Figure 8.3, the TR-Init-PE has already re-transmitted the Invoke PDU due to

the expiration of the re-transmission timer. Upon receipt of the re-transmitted Invoke

PDU, the TR-Resp-PE re-transmits the Ack PDU to recover from the situation where,

for example, the �rst Ack PDU was lost due to an error. However, the �rst Ack PDU

is not lost, and the TR-Init-PE receives two Ack PDUs, triggering the delivery of two

TR-Invoke.cnf primitives to the TR-Init-User. This is inconsistent with the TR-Service,

where only one TR-Invoke.cnf primitive is delivered to the TR-Init-User.

We presented the error of delivering two TR-Invoke.cnf primitives to the TR-Init-User

in [56]. The solution suggested was to ignore the second (or any subsequent) Ack PDUs

received by the TR-Init-PE. However, the TR-Service language that we compared the TR-

Protocol language with in [56] did not require end-to-end behaviour of the TR-Invoke and

TR-Result primitives (e.g. Assumption 6.2 in Chapter 6). For the TR-Service presented

in Chapter 6, Figure 8.3 reveals another error, where the �rst TR-Invoke.cnf primitive

is delivered to the TR-Init-User without the TR-Resp-User previously having submitted

the TR-Invoke.res primitive. This is the result of ambiguous semantics of the Ack PDU,

which is explained shortly. Section 8.4.2 shows that re-de�ning the semantics of the Ack

PDU will also solve the problem of two TR-Invoke.cnf primitives being delivered to the

TR-Init-User. We will see shortly that the Result PDU sent by the TR-Resp-PE is also

140

ambiguous. A similar error can occur when the TR-Init-PE acknowledges the Result

PDU. We �rst consider the acknowledgment of the Invoke PDU.

After the TR-Resp-PE has delivered the TR-Invoke.ind primitive to the TR-Resp-

User, it waits for a response in the INVOKE RESP WAIT state. If no response is received

before the Acknowledgment timer expires, then the TR-Resp-PE sends an Ack PDU and

stops the timer (Entry 9 in Table B.7). The response from the TR-Resp-User may be the

submission of a TR-Invoke.res primitive (Entry 1, Table B.7) or TR-Result.req primitive

(Entry 2, Table B.7). The TR-Invoke.res primitive can only be submitted before the

time-out occurs. The TR-Resp-PE re-starts the timer when TR-Invoke.res is received.

The receipt of the TR-Result.req primitive causes the TR-Resp-PE to send the Result

PDU. There are four di�erent scenarios possible, which are shown in Figure 8.4. The

actions of the TR-Init-PE shown are based on the current TR-Protocol.

If we ignore the actions taken by the TR-Init-PE on receipt of the PDUs, from the

scenarios shown in Figure 8.4 we obtain the following semantics for the PDUs:

Figure 8.4(a): The Result PDU indicates to the TR-Init-PE: the invocation has

been received by the TR-Resp-User (TR-Invoke.ind), and the TR-Resp-User has

returned the result (TR-Result.req).

Figure 8.4(b): The Ack PDU indicates to the TR-Init-PE: the invocation has

been received by the TR-Resp-User (TR-Invoke.ind). The Result PDU indicates to

the TR-Init-PE: the TR-Resp-User has returned the result (TR-Result.req).

Figure 8.4(c): The Ack PDU indicates to the TR-Init-PE: the invocation has

been received by the TR-Resp-User (TR-Invoke.ind), and the TR-Resp-User has

acknowledged the invocation (TR-Invoke.res). The Result PDU indicates to the

TR-Init-PE: the TR-Resp-User has returned the result (TR-Result.req).

Figure 8.4(d): The Result PDU indicates to the TR-Init-PE: the invocation has

been received by the TR-Resp-User (TR-Invoke.ind), the TR-Resp-User has ac-

knowledged the invocation (TR-Invoke.res), and the TR-Resp-User has returned

the result (TR-Result.req).

These four di�erent scenarios give rise to ambiguous semantics of the Ack PDU and

Result PDU:

� Does the TR-Init-PE interpret the Ack PDU as an acknowledgment from the TR-

Resp-User (in which case a TR-Invoke.cnf primitive should be delivered to the

TR-Init-User) or just from the TR-Resp-PE?

� If an Ack PDU has not been received, does the TR-Init-PE interpret the Result

PDU as an acknowledgment of the invocation from the TR-Resp-User (in which

141

TR-Result.req

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Result

IRWRW

RRW

TR-Result.ind

TR-Invoke.cnf

RRW

(a)

TR-Result.req

TR-Result.ind

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Result

Time-out
Ack

RW

RRW

RRW

RW

IRW
A

TR-Invoke.cnf

(b)

TR-Invoke.res

TR-Result.reqTR-Invoke.cnf

TR-Result.ind

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Time-out
A

RRW

RW

IRWRW

RRW

Result

Ack

(c)

TR-Invoke.res

TR-Result.req

TR-Result.ind

TR-Invoke.cnf

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Result

RW

RRW

IRW

RW

RRW

(d)

Figure 8.4: Acknowledgment of the Invoke PDU leads to illegal primitive sequences at

the TR-Init-User when UserAck is O�. In (a) the TR-Invoke.cnf primitive is delivered

without the TR-Invoke.res being submitted by the TR-Resp-User. This is the same for

(b). The PDUs received are misinterpreted. In (c) and (d) the PDUs are correctly

interpreted (i.e. the TR-Invoke.cnf primitive should be delivered).

142

case a TR-Invoke.cnf and TR-Result.ind primitive should be delivered to the TR-

Init-User) or just as the result (only TR-Result.ind primitive delivered to the TR-

Resp-User)?

There is a similar problem for the Ack PDU when used to acknowledge the Result

PDU. A time-out by the TR-Init-PE while waiting for a response from the TR-Init-

User (TR-Result.res) triggers the Ack PDU to be sent to the TR-Resp-PE (Entry 9,

Table B.3). If the TR-Result.res is submitted before the time-out, then the same Ack

PDU is sent (Entry 1/2, Table B.3). Does the TR-Resp-PE interpret the Ack PDU as an

acknowledgment from the TR-Init-User (in which case a TR-Result.cnf primitive should

be delivered to the TR-Resp-User) or just from the TR-Init-PE?

8.4.2 Suggested Changes to the TR-Protocol

To overcome these ambiguities, the purpose of each PDU must be de�ned so the receiv-

ing TR-PE can process it correctly. This can be achieved by using a new ag, called

Confirmed or CNF, in each of the PDUs' headers. We �rst consider the case of the TR-

Resp-PE sending PDUs to the TR-Init-PE. For the acknowledgment (or con�rmation) of

the Invoke PDU, if the CNF ag is set, then the PDUs indicate to the TR-Init-PE that

the TR-Resp-User has acknowledged the invocation (with a TR-Invoke.res primitive).

Therefore, in Figure 8.4(c) the Ack PDU would have its CNF ag set. In Figure 8.4(d)

the Result PDU would have its CNF ag set. A new variable (of type boolean) is required

at each TR-PE so it is known if the TR-Invoke.res primitive has been submitted (TR-

Resp-PE) or the TR-Invoke.cnf primitive has been delivered (TR-Init-PE). We call this

variable Ucnf for User con�rm. Figure 8.5 shows the scenarios of Figure 8.4 updated to

di�erentiate between the semantics of the Ack and Result PDUs.

An alternative solution to the ambiguous semantics of the Ack and Result PDU may

be to de�ne new PDUs. However, adding a single bit ag requires only a small change to

the current TR-Protocol. For the Ack PDU the Reserved bit (RES) could be used for the

ag. The Result PDU would require a fourth octet, of which one bit would be the CNF

ag. The seven other bits would be reserved. Figures 8.6 and 8.7 show the new header

structures for the Ack and Result PDUs, respectively.

Another alternative solution, in the UserAck O� case, could be to prevent the TR-

Resp-User from submitting a TR-Invoke.res primitive. Then there would be no need to

di�erentiate the PDUs at the TR-Init-PE because a TR-Invoke.cnf primitive must not be

delivered to the TR-Init-User. Allowing the TR-Invoke.res primitive is however a better

solution as it is more general.

The CNF ag is also used for the acknowledgment of the Result PDU. If set, the Ack

PDU is indicating to the TR-Resp-PE that the TR-Init-User has submitted the TR-

143

TR-Result.req

TR-Result.ind

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

IRWRW

RRW

RRW
Result(CNF=0)

(a)

TR-Result.req

TR-Result.ind

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Time-out

RW

RRW

RRW

RW

IRW
A

Result(CNF=0)

Ack(CNF=0)

(b)

TR-Invoke.res

TR-Result.reqTR-Invoke.cnf

TR-Result.ind

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Time-out
A

RRW

RW

IRWRW

RRW
Result (CNF=1)

Ack (CNF=1)

(c)

TR-Invoke.res

TR-Result.req

TR-Result.ind

TR-Invoke.cnf

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

RW

RRW

IRW

RW

RRW
Result (CNF=1)

(d)

Figure 8.5: Adding a CNF bit to the Ack and Result PDUs enables the TR-Init-PE to

correctly interpret the semantics of the PDU when UserAck is O�. It is assumed a TR-

Invoke.ind primitive has just been delivered to the TR-Resp-User. (a) The Result PDU

with CNF=0 indicates that the TR-Resp-User has submitted the TR-Result.req primitive,

but not the TR-Invoke.res primitive. (b) The Ack PDU with CNF=0 indicates the TR-

Resp-PE has received the Invoke PDU. (c) The Ack PDU with CNF=1 indicates the TR-

Resp-User has submitted the TR-Invoke.res primitive. (d) The Result PDU with CNF=1

indicates the TR-Resp-User has submitted both the TR-Invoke.res and TR-Result.req

primitives.

144

Bit/Octet 0 1 2 3 4 5 6 7
1 CON PDU Type = Ack Tve Tok CNF RID
2 TID
3

Figure 8.6: New header structure for Ack PDU including CNF bit

Bit/Octet 0 1 2 3 4 5 6 7
1 CON PDU Type = Result GTR TTR RID
2 TID
3

4 CNF RES

Figure 8.7: New header structure for Result PDU including CNF bit

Result.res primitive. If the CNF ag is not set, then the Ack PDU is only indicating the

TR-Init-PE has received the result.

Tables 8.8 to 8.13 show the updated state table entries to incorporate the CNF �eld

in the TR-Protocol. To simplify the changes, we introduce the following conventions:

� The CNF �eld in the Ack PDU and Result PDU is set to the value speci�ed in the

Action column of the state tables. If no value is speci�ed, the CNF �eld is 0.

� Additional text to the state tables is shown in italics.

� Text to be deleted from the state tables is indicated with a line through it.

Event Condition Action Next State

2 RcvAck Class == 2 Stop timer RESULT WAIT
CNF==1 Generate TR-Invoke.cnf
Ucnf==False Ucnf=True

HoldOn=True
2a Class == 2 Stop timer RESULT WAIT

9 RcvResult Class == 2 Stop timer RESULT RESP
HoldOn==True Generate TR-Result.ind WAIT

Ucnf=False

Start timer, A
10 Class == 2 Stop timer

CNF==1 Generate TR-Invoke.cnf
Ucnf==False Generate TR-Result.ind
HoldOn==False Ucnf=False

Start timer, A

Table 8.8: Entries 2, 2a, 9 and 10 of the TR-Init-PE RESULT WAIT state table (Table

B.2) modi�ed to remove PDU ambiguities

The TR-Init-PE enters the RESULT WAIT state (Table 8.8) after sending the initial

Invoke PDU. When an Ack PDU is received the timer is stopped (Entries 2 and 2a,

Table 8.8). If the CNF �eld in the PDU is 1 and the TR-Invoke.cnf primitive hasn't

already been delivered to the TR-Init-User, then it is now delivered (Entry 2, Table 8.8).

145

Event Condition Action Next State

1 TR-Result.res Queue(A) Ack PDU (CNF=1) WAIT TIMEOUT
Ucnf=True

Start timer, W
2 ExitInfo Queue(A) Ack PDU(CNF=1) with Info TPI

Ucnf=True

Start timer, W

Table 8.9: Entries 1 and 2 of the TR-Init-PE RESULT RESP WAIT state table (Table

B.3) modi�ed to remove PDU ambiguities

Event Condition Action Next State

2 RcvResult RID=1 Send Ack PDU (CNF=Ucnf) WAIT TIMEOUT
3 RcvResult RID=1,ExitInfo Send Ack PDU (CNF=Ucnf) with info TPI WAIT TIMEOUT

Table 8.10: Entries 2 and 3 of the TR-Init-PE WAIT TIMEOUT state table (Table B.4)

modi�ed to remove PDU ambiguities

The same applies upon the receipt of the Result PDU (Entries 9 and 10, Table 8.8),

except now Ucnf is set to False because it is now used to indicate if the TR-Init-User

has con�rmed (in the RESULT RESP WAIT state). The HoldOn variable is no longer

needed.

The variable Ucnf at the TR-Init-PE is re-used for the acknowledgment of the Result

PDU (Tables 8.9 and 8.10). It is set to 1 if the TR-Result.res primitive has been submitted

(Entries 1 and 2, Table 8.9). If the TR-Init-PE has to re-transmit the Ack PDU, then

it uses Ucnf to determine whether to set the CNF ag in the header (Entries 2 and 3,

Table 8.10). When entering the RESULT RESP WAIT state from the RESULT WAIT

state, the TR-Init-PE must ensure Ucnf is reset to 0 (Entries 9 and 10, Table 8.8).

Event Condition Action Next State

1 TR-Invoke.res Class == 2 Ucnf=True RESULT WAIT
Start timer, A

2 TR-Result.req Reset RCR RESULT RESP
Start timer, R[RCR] WAIT
Send Result PDU (CNF=0)

9 TimerTO A Class == 2 Send Ack PDU (CNF=0) RESULT WAIT
Uack == False

Table 8.11: Entry 1 of the TR-Resp-PE INVOKE RESP WAIT state table (Table B.7)

modi�ed to remove PDU ambiguities

Ucnf is initially set to False at the TR-Resp-PE. In the INVOKE RESP WAIT

state, Ucnf is set to True if the TR-Resp-User submits a TR-Invoke.res primitive (Entry

1, Table 8.11). Otherwise, it remains False. Note that the TR-Resp-PE enters the

RESULT WAIT state after the submission of the TR-Invoke.res primitive. Therefore,

the events resulting in the sending of the Ack PDU or Result PDU in the INVOKE

RESP WAIT state (Entries 2 and 9, Table 8.11) always set the CNF �eld in the PDUs to

0 (TR-Invoke.res hasn't been submitted). In the RESULT WAIT state, the CNF �eld in

the PDUs is set to the value of Ucnf (Entries 1, 4 and 8, Table 8.12). Similarly, in the

146

Event Condition Action Next State

1 TR-Result.req Reset RCR RESULT RESP
Start timer, R[RCR] WAIT
Send Result PDU (CNF=Ucnf)

4 RcvInvoke RID=1, Ack PDU Resend Ack PDU (CNF=Ucnf) RESULT WAIT
already sent

8 TimerTO A Send Ack PDU (CNF=Ucnf) RESULT WAIT

Table 8.12: Entries 1, 4 and 8 of the TR-Resp-PE RESULT WAIT state table (Table

B.8) modi�ed to remove PDU ambiguities

Event Condition Action Next State

3 RcvAck CNF==1 Generate TR-Result.cnf LISTEN
3a RcvAck CNF==0 LISTEN

5 TimerTO R RCR< Increment RCR RESULT RESP
RCR MAX Send Result PDU (CNF=Ucnf) WAIT

Start timer, R[RCR]

Table 8.13: Entries 3, 3a and 5 of the TR-Resp-PE RESULT RESP WAIT state table

(Table B.9) modi�ed to remove PDU ambiguities

RESULT RESP WAIT state, the CNF �eld in the re-transmitted Result PDU is set to

Ucnf (Entry 5, Table 8.13). Also in the RESULT RESP WAIT state, the TR-Resp-PE

delivers a TR-Result.cnf primitive to the TR-Resp-User only if the CNF ag is set in the

received Ack PDU (Entries 3 and 3a, Table 8.13).

8.4.3 Changes to the TR-Protocol CPN

The following are a set of changes to the TR-Protocol CPN (Chapter 7) to reect the

changes to the TR-Protocol in Section 8.4.2. The changes are only summarized as the

complete Revised TR-Protocol CPN is given in Appendix E. The modi�ed arc inscrip-

tions and guards are shown in bold, while new transitions have thicker edges.

� The colour sets ResultPDU c and AckPDU c are modi�ed to include the CNF ag.

(Note that ResultPDU c is now a record.)

� The Ucnf ag is added to the transaction data colour sets, ITransData and RTrans-

Data. Also, the ag HoldOn is removed from ITransData.

� The functions in the declarations are updated to reect the changes to ITransData

and RTransData.

� The Ack and Result PDUs on output arcs are updated to include the value of the

CNF �eld in the record.

� The inscriptions of the output arcs from the following transitions to the Initia-

tor or Responder place are updated to set Ucnf to T: RcvAck Cnf on the page

147

I RESULT WAIT, Result res on the page I RESULT RESP WAIT, and Invoke res on

the page R INVOKE RESP WAIT.

� The inscriptions of the output arcs from the following transitions to the Initia-

tor or Responder place are updated to reset Ucnf to F: RcvResult Cnf on page

I RESULT WAIT, RcvResult on page I RESULT WAIT, and Result ind on the page

I RW RcvResult Cnf.

� The guards of RcvAck Cnf, RcvResult (both on page I RESULT WAIT), Invoke cnf

(page I RW RcvResult Cnf) and RcvAck Cnf (page R RESULT RESP WAIT) are up-

dated to include the conditions testing Ucnf and CNF.

� A new transition, called RcvAck, is added to the page I RESULT WAIT. This models

the receipt of an Ack PDU that doesn't result in a TR-Invoke.cnf primitive being

delivered to the TR-Init-User.

� A new transition, called RcvAck, is added to the page R RESULT RESP WAIT. This

models the receipt of an Ack PDU that doesn't result in a TR-Result.cnf primitive

being delivered to the TR-Resp-User.

The desired properties must be updated to reect these changes to the TR-Protocol.

The transition RcvAck on the I RESULT WAIT page will be dead when UserAck is On

and RCRImax=0, because:

� the TR-Resp-PE cannot send an Ack PDU with CNF set to F (the TR-Resp-User

must con�rm when UserAck is On), and

� Ucnf at the TR-Init-PE is only set to true after the �rst Ack PDU (CNF=1) sent by

the TR-Resp-PE is received. The TR-Resp-PE can only send a second Ack PDU

(CNF=1) upon receipt of a re-transmitted Invoke PDU, which isn't possible when

RCRImax=0.

The transition RcvAck on the R RESULT RESP WAIT page will be dead when UserAck

is On, because in that case, an Ack PDU can only be sent by the TR-Init-PE after a

TR-Result.res primitive has been submitted by the TR-Init-User.

Table 8.3 has two additional entries, as shown in Table 8.14, to include these new

dead transitions.

8.5 Erroneous Re-start of the Transaction

The second error evident from the analysis of the TR-Protocol is the possibility for the

TR-Resp-User to be delivered two TR-Invoke.ind primitives, within the context of one

148

No. Condition Dead Transition Page

14 UserAck On ^ RCRImax=0 RcvAck I RESULT WAIT
15 UserAck On RcvAck R RESULT RESP WAIT

Table 8.14: Conditions 14 & 15 for an expected dead transition in the TR-Protocol CPN

(see Table 8.3)

transaction initiated by the TR-Init-User (i.e. only one TR-Invoke.req primitive submit-

ted). This is in conict with the TR-Service where the TR-Invoke primitives must be

end-to-end (Assumption 6.2).

8.5.1 Description and Example of the Error

As we discussed for the TR-Service (Chapter 6), if the TR-Resp-User submits a TR-

Abort.req primitive, then, from its point of view, the transaction is complete. The

receipt of a re-transmitted (or duplicated) Invoke PDU after the TR-Abort.req must not

be accepted. Figures 8.8 and 8.9 show an occurrence sequence and its TSD, respectively,

where two TR-Invoke.ind primitives are delivered to the TR-Resp-User. After the TR-

Resp-User is noti�ed of the transaction (TR-Invoke.ind), it aborts (TR-Abort.req), and

the TR-Resp-PE re-enters the LISTEN state. Note that the Abort PDU sent may be

delayed, or even lost. Figure 8.9 shows the TR-Init-PE re-transmitting the Invoke PDU,

due to a time-out on the re-transmit timer. The receipt of this re-transmitted Invoke

PDU by the TR-Resp-PE initiates TID veri�cation because the next TID value is not

expected. The TR-Init-PE responds positively to the query, indicating to the TR-Resp-

PE to proceed with the transaction. The receipt of the Ack(Tok) PDU by the TR-Resp-

PE triggers a second TR-Invoke.ind primitive to be delivered to the TR-Resp-User.

8.5.2 Suggested Changes to the TR-Protocol

We modify the TR-Protocol so the TID veri�cation is not initiated immediately after

the transaction is aborted. This means the abort will end the transaction, and no more

primitives are allowed. However, a TID veri�cation should be possible for new incarna-

tions of the TID and, therefore, the TID veri�cation is not allowed for a certain time

after the transaction is aborted (denoted by the interval W). A new incarnation of a TID

is a result of the TID space wrapping and the TID being re-used. This will be discussed

in more detail shortly. The changes to the TR-Protocol can be summarized as:

� A new timer interval, W, is used by the TR-Resp-PE.

� A new variable of type boolean, called AbortSent, is used by the TR-Resp-PE.

� Modi�cations are made to the TR-Resp-PE state tables (Tables 8.15 to 8.19) so that

when the TR-Resp-User or TR-Resp-PE aborts a transaction, the timer is started

149

1
0:1

1
Responder: 1‘(R_LISTEN,{Uack = F,RCR = 0,AckSent = F,Timer = F})
TempState: empty
First: 1‘T
Initiator: 1‘(I_NULL,{Uack = F,RCR = 0,AckSent = F,HoldOn = F,Timer = F})
RespToInit: empty
InitToResp: empty
UserAck: 1‘F

2
1:7

8
1:8

19
2:8

67
3:5

172
2:6

397
1:6

836
1:9

1:1->2
I_NULL’Invoke_req: {u=F,it={
Uack = F,RCR = 0,AckSent = F,
HoldOn = F,Timer = F}}

8:2->8
R_LISTEN’RcvInvoke: {rt={Uack =
F,RCR = 0,AckSent = F,Timer = F}
,invoke={RID = F,UP = F}}

27:8->19
I_RESULT_WAIT’TimerTO_R: {it={
Uack = F,RCR = 0,AckSent = F,
HoldOn = F,Timer = T}}

87:19->67
R_INVOKE_RESP_WAIT’Abort_req: {
rt={Uack = F,RCR = 0,AckSent =
F,Timer = T}}

299:67->172
R_LISTEN’RcvInvoke_Fail: {rt={
Uack = F,RCR = 0,AckSent = F,
Timer = F},invoke={RID = T,UP =
F},TorF=F}

732:172->397
I_RESULT_WAIT’RcvAck_Tve: {it={
Uack = F,RCR = 1,AckSent = F,
HoldOn = F,Timer = T},ack={RID
= F,TveTok = T}}

1692:397->836
R_TIDOK_WAIT’RcvAck: {rt={Uack
= F,RCR = 0,AckSent = F,Timer =
F},ack={RID = F,TveTok = T}}

Figure 8.8: Path in the TR-Protocol (Con�guration 1) state space showing two TR-

Invoke.ind primitives

TR-Abort.req

TR-Invoke.ind

TR-Invoke.ind
Invoke

RW

NU TR-Invoke.req

IRW

LI

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Ack(Tve)

Invoke(RID=T) Abort
LI

TW

IRW

Time-out

R

Ack(Tok)

Figure 8.9: Time sequence diagram of the TR-Protocol in Con�guration 1 showing two

TR-Invoke.ind primitives

150

with interval W. If an Abort PDU has also been sent, then the ag AbortSent is

set.

� Three new entries are added to the TR-Resp-PE LISTEN state table (Table 8.15):

1. Upon receipt of an unexpected Invoke PDU, if a TID is not allowed and an

Abort PDU has not been sent, then simply ignore the Invoke PDU (Entry 3a).

2. Upon receipt of an unexpected Invoke PDU (i.e. incorrect TID), if a TID

veri�cation is not allowed (timer with interval W is on) and an Abort PDU has

been sent, then re-send the Abort PDU (Entry 3b).

3. When the timer with interval W expires, a TID veri�cation is now possible

(Entry 3c).

Event Condition Action Next State

3 RcvInvoke Class == 2 j 1 Send Ack(TIDve) TIDOK WAIT
Invalid TID
Timer O�

3a Class == 2 j 1 Ignore LISTEN

Invalid TID

Timer On

3b Class == 2 j 1 Send Abort PDU (USER) LISTEN

Invalid TID

Timer On

AbortSent==True

3c TimerTO W Stop timer LISTEN

4 RcvErrorPDU Send Abort PDU (PROTOERR) LISTEN
Set AbortSent

Start timer, W

Table 8.15: Entries 3, 3a, 3b, 3c and 4 of the TR-Resp-PE LISTEN state table (Table

B.5) modi�ed to �x the TID veri�cation error

Event Condition Action Next State

2 RcvErrorPDU Send Abort PDU (PROTOERR) LISTEN
Abort transaction
Set AbortSent

Start timer, W

Table 8.16: Entry 2 of the TR-Resp-PE TIDOK WAIT state table (Table B.6) modi�ed

to �x the TID veri�cation error

When the TR-Resp-PE begins, the timer is o�. Therefore, the new state table entries

in Table 8.15 do not apply. A transaction can proceed as in the initial TR-Protocol

con�guration (e.g. Entry 1/2, Table B.5). When a transaction is aborted by the TR-

Resp-User or as a result of a time-out by the TR-Resp-PE, the TR-Resp-PE enters the

LISTEN state. The modi�ed state table entries in Tables 8.17, 8.18 and 8.19 indicate

that the timer is started, with interval W. The interval W will be discussed shortly. Also,

151

Event Condition Action Next State

3 TR-Abort.req Abort transaction LISTEN
Send Abort PDU (USER)
Set AbortSent

Start timer, W

6 RcvErrorPDU Abort transaction LISTEN
Send Abort PDU (PROTOERR)
Set AbortSent

Start timer, W

Generate TR-Abort.ind
8 TimerTO A AEC == Abort transaction LISTEN

AEC MAX Send Abort PDU (NORESPONSE)
Set AbortSent

Start timer, W

Table 8.17: Entries 3, 6 and 8 of the TR-Resp-PE INVOKE RESP WAIT state table

(Table B.7) modi�ed to �x the TID veri�cation error

Event Condition Action Next State

5 RcvErrorPDU Abort transaction LISTEN
Send Abort PDU (PROTOERR)
Set AbortSent

Start timer, W

Generate TR-Abort.ind
6 TR-Abort.req Abort transaction LISTEN

Send Abort PDU (USER)
Set AbortSent

Start timer, W

Table 8.18: Entries 5 and 6 of the TR-Resp-PE RESULT WAIT state table (Table B.8)

modi�ed to �x the TID veri�cation error

Event Condition Action Next State

1 TR-Abort.req Abort transaction LISTEN
Send Abort PDU (USER)
Set AbortSent

Start timer, W

4 RcvErrorPDU Abort transaction LISTEN
Send Abort PDU (PROTOERR)
Set AbortSent

Start timer, W

Generate TR-Abort.ind
6 TimerTO R RCR == Generate TR-Abort.ind LISTEN

RCR MAX Abort transaction
Start timer, W

Table 8.19: Entries 1, 4 and 6 of the TR-Resp-PE RESULT RESP WAIT state table

(Table B.9) modi�ed to �x the TID veri�cation error

152

for all cases except the time-out with RCR at the maximum in the RESULT RESP WAIT

state (Entry 6, Table 8.19), the ag AbortSent is set since an Abort PDU has been sent

to the TR-Init-PE.

The timer is used in the LISTEN state to determine if TID veri�cation can follow

an abort initiated by the TR-Resp-PE or TR-Resp-User. If we assume the transaction

aborted had a TID of x, then when the timer is on, the receipt of an Invoke PDU with

TID x cannot initiate TID veri�cation. Instead, if an Abort PDU has been sent, then it is

re-transmitted and the TR-Resp-PE remains in the LISTEN state (Entry 3b, Table 8.15).

If an Abort PDU was not sent, then the Invoke PDU is ignored (Entry 3a, Table 8.15).

When the timer with interval W expires, the timer is stopped, and the TR-Resp-PE

remains in the LISTEN state. With the timer o�, the receipt of an Invoke PDU with TID

x (which is an unexpected TID), initiates TID veri�cation. This allows TID veri�cations

to be initiated, if necessary, when transactions with new incarnations of the TID x are

created. Figure 8.10 shows an example.

The TR-Init-User initiates a transaction with TID=0. After being delivered a TR-

Invoke.ind primitive, the TR-Resp-User submits a TR-Abort.req primitive. The TR-

Resp-PE enters the LISTEN state and starts the timer with interval W. The TR-Resp-PE

is now expecting an Invoke PDU with TID=1. As the Abort PDU has not been received

by the TR-Init-PE, it re-transmits the Invoke PDU. Upon receipt of the Invoke PDU

with TID=0, the TR-Resp-PE does not initiate TID veri�cation because the transaction

has just been aborted. Instead, the TR-Resp-PE re-sends the Abort PDU.

The TR-Init-User may initiate a new transaction with TID=1. The TR-Resp-PE

accepts the Invoke PDU and proceeds, as normal, with the transaction (for clarity, only

the Invoke and Result PDUs are shown|the Ack PDU is omitted).

If the TR-Init-User initiates transactions with a di�erent TR-Resp-User (B), the TID

used by the TR-Init-PE will be increased, but the TID expected by the original TR-

Resp-User (A) will remain the same. Therefore, after executing 32765 transactions with

a di�erent TR-Resp-User (B), the TR-Init-User can then initiate a transaction with

TID=32767 with the original TR-Resp-User (A). As a TID of 2 was expected, TID

veri�cation is initiated and eventually the transaction is successfully completed.

The next transaction initiated by the TR-Init-User has TID = 0. This is a new

incarnation of this TID value, because the TID space has wrapped. The TR-Resp-PE

can treat the Invoke PDU as a new transaction, not a re-transmission or duplicate. This

is because the TR-Init-PE can only initiate 214 transactions within two maximum packet

lifetimes (2MPL) (see Section 5.3.1 and Section 7.2.1). Assuming MPL is signi�cantly

larger than the processing time for the transaction plus the time to send a PDU, the PDUs

of an old incarnation (e.g. the �rst transaction with TID=0) will not be present in the

network, and the transaction completed. Therefore, rather than immediately rejecting

153

TR-Abort.req

TR-Invoke.req
TR-Invoke.ind

TR-Result.req
TR-Result.ind

TR-Invoke.req

TR-Invoke.ind

TR-Result.req
TR-Result.ind

TR-Invoke.req

TR-Invoke.ind

TR-Invoke.ind
InvokeTR-Invoke.req

TR-Init-PE TR-Resp-PE
T-Service-ProviderTR-Init-User TR-Resp-User

Invoke Abort

Abort

TID Expected
0

1

1

0

2

Time-out

Invoke

Result

32767

32765 transactions
between TR-Init-User

and a different
TR-Resp-User

Invoke

Ack(Tve)
Ack(Tok)

0 Invoke

Ack(Tok)
Ack(Tve)

Result

Time-out

W

2

4.MPL

Figure 8.10: A TID veri�cation can only occur W seconds after a previous incarnation

has been aborted for the TR-Protocol.

154

the Invoke PDU, TID veri�cation should be performed. As the timer with interval W

has expired, TID veri�cation can be performed on receipt of the Invoke PDU. Then the

transaction can proceed, as normal.

The changes to the TR-Protocol speci�ed in Tables 8.15 to 8.19 do not allow TID

veri�cation to be performed before the time-out (for a new incarnation of a TID value).

If the value of the interval W is less than 4MPL, then TID veri�cation will be possible

for the new incarnation of TID x. If W is greater than 4MPL, then the Invoke PDU

with the new incarnation of the TID x may be unnecessarily rejected. This could reduce

eÆciency of the TR-Protocol. The minimum value of W should be based on the time

it takes for a transaction to be completed, and all of the associated PDUs to be cleared

from the network. 2MPL may be a reasonable value for this [19]. Further investigation

into the optimal values for W is needed.

8.5.3 Changes to the TR-Protocol CPN

The TR-Protocol CPN can be updated to reect the changes to the TR-Protocol in the

following way:

� A new transition, called RcvInvoke Abo, is added to the page R LISTEN. This models

the receipt of an unexpected Invoke PDU while TID veri�cation is not allowed and

an Abort PDU has been sent (Entry 3b, Table 8.15). Entry 3c of Table 8.15 is not

modelled because this only ignores the Invoke PDU.

� The guards for transitions RcvInvoke and RcvInvoke Fail on page R LISTEN are

updated to include the condition #Timer(rt)=F.

� The inscriptions on the output arcs for the following transitions to the place Re-

sponder are updated to set the AbortSent ag and start the timer with interval W:

TimerTO A Max and Abort req on page R INVOKE RESP WAIT, Abort req on page

R RESULT WAIT and Abort req on page R RESULT RESP WAIT.

� The inscription on the output arc from the following transitions to the place Re-

sponder are updated to start the timer with interval W: TimerTO R Max on page

R RESULT RESP WAIT and ProviderAbort on page R ABORT.

Note that the RcvErrorPDU state table entries are not modelled in the TR-Protocol

CPN, and therefore there are no changes required to reect modi�cations to these entries.

Also, the time-out on timer with interval W (Entry 3c, Table 8.15) is not modelled

because after the time-out the transaction must have been completed and no PDUs can

be received by the TR-Resp-PE (this is ensured because all PDUs are discarded after

155

2MPL). Therefore, nothing can occur after the time-out (e�ectively, the interval W is

in�nite).

Again, the desired properties must be updated to reect these changes to the TR-

Protocol. When RCRImax=0, the transition RcvInvoke Abo on the R LISTEN page will

be dead because it models the receipt of a re-transmitted Invoke PDU. Table 8.3 has an

additional entry, as shown in Table 8.20, to include the new dead transition.

No. Condition Dead Transition Page

16 RCRImax=0 RcvInvoke Abo R LISTEN

Table 8.20: Condition 16 for an expected dead transition in the TR-Protocol CPN (see

Tables 8.3 and 8.14)

The desired terminal markings (Property 8.2) must now take into account the new

possible states of the TR-Resp-PE upon termination. That is, in the general case (Ta-

ble 8.2) the marking of the place Responder may not return to its default values. The

Timer should be T, and AbortSent may be either T or F in a successful terminal marking.

8.6 Misinterpreted Ack(Tok) PDU

In Section 8.5 we saw that a second TR-Invoke.ind primitive can be erroneously delivered

to the TR-Resp-User as a result of a re-transmitted Invoke PDU. A timer was used to

restrict the TID veri�cation (and hence, TR-Invoke.ind) after an aborted transaction at

the TR-Resp-PE. However, a re-transmitted Invoke PDU can still result in an error, if

the Ack(Tok) PDU is re-transmitted.

8.6.1 Description and Example of the Error

It is possible for the TR-Init-PE to re-transmit an Invoke PDU and subsequently re-

transmit an Ack(Tok) PDU. If these PDUs are delayed, then the TR-Resp-PE may

misinterpret the Ack(Tok) PDU as a positive acknowledgment of a TID veri�cation,

when the TR-Init-PE has no outstanding transaction. Figure 8.11 shows one occurrence

sequence that leads to this error. A TSD of this sequence is shown in Figure 8.12.

Figure 8.12 shows a transaction beginning which immediately requires TID veri�ca-

tion. The TR-Resp-PE sends an Ack(Tve) PDU, and on receipt of the Ack(Tok) PDU

it delivers the TR-Invoke.ind primitive to the TR-Resp-User. In the meantime, two

time-outs have occurred at the TR-Init-PE, one before the receipt of the Ack(Tve) PDU

(triggering the re-transmission of the Invoke PDU), and one after its receipt (triggering

the re-transmission of the Ack(Tok) PDU). These two re-transmitted PDUs are delayed

in the network. The TR-Init-User submits a TR-Abort.req primitive, and upon receipt

156

1
0:1

1
Responder: 1‘(R_LISTEN,{Uack = F,RCR = 0,AckSent = F,Timer = F})
TempState: empty
First: 1‘T
Initiator: 1‘(I_NULL,{Uack = F,RCR = 0,AckSent = F,HoldOn = F,Timer = F})
RespToInit: empty
InitToResp: empty
UserAck: 1‘F

2
1:7

7
1:5

17
2:6

59
1:6

167
1:8

384
2:8

809
2:6

1588

27:1

2747

17:3

775
21:6

1:1->2
I_NULL’Invoke_req: {u=F,it={
Uack = F,RCR = 0,AckSent = F,
HoldOn = F,Timer = F}}

7:2->7
R_LISTEN’RcvInvoke_Fail: {rt={
Uack = F,RCR = 0,AckSent = F,
Timer = F},invoke={RID = F,UP =
F},TorF=T}

22:7->17
I_RESULT_WAIT’TimerTO_R: {it={
Uack = F,RCR = 0,AckSent = F,
HoldOn = F,Timer = T}}

73:17->59
I_RESULT_WAIT’RcvAck_Tve: {it={
Uack = F,RCR = 1,AckSent = F,
HoldOn = F,Timer = T},ack={RID
= F,TveTok = T}}

251:59->167
R_TIDOK_WAIT’RcvAck: {rt={Uack
= F,RCR = 0,AckSent = F,Timer =
F},ack={RID = F,TveTok = T}}

702:167->384
I_RESULT_WAIT’TimerTO_R_Tve: {
it={Uack = F,RCR = 2,AckSent =
T,HoldOn = F,Timer = T}}

1622:384->809
I_RESULT_WAIT’Abort_req: {it={
Uack = F,RCR = 3,AckSent = T,
HoldOn = F,Timer = T}}

3501:809->1588
R_INVOKE_RESP_WAIT’RcvAbort: {
rt={Uack = F,RCR = 0,AckSent =
F,Timer = T}}

7036:1588->2747
R_LISTEN’RcvInvoke_Fail: {rt={
Uack = F,RCR = 0,AckSent = F,
Timer = F},invoke={RID = T,UP =
F},TorF=F}

12217:2747->775
R_TIDOK_WAIT’RcvAck: {rt={Uack
= F,RCR = 0,AckSent = F,Timer =
F},ack={RID = T,TveTok = T}}

Figure 8.11: Path in the TR-Protocol state space (Con�guration 1) showing the TR-

Resp-PE misinterpret the Ack(Tok) PDU as acknowledging the Result PDU

157

TR-Invoke.ind

TR-Invoke.ind

InvokeTR-Invoke.req
TR-Init-PE TR-Resp-PE

T-Service-ProviderTR-Init-User TR-Resp-User

Ack(Tok)

Ack(Tve)Time-out

Time-out

R
RW

NU LI

TW

IRW

R

Invoke
TR-Abort.req

TR-Abort.indNU

LI

Abort

TW

IRW

Ack(Tok)

Ack(Tve)

Figure 8.12: Time sequence diagram of the TR-Protocol (Con�guration 1) showing the

TR-Resp-PE misinterpret the Ack(Tok) PDU as acknowledging the Result PDU

of the Abort PDU, the TR-Resp-PE delivers a TR-Abort.ind primitive to the TR-Resp-

User. The transaction is complete at both TR-Init-PE and TR-Resp-PE. However, upon

receipt of the re-transmitted Invoke PDU the TR-Resp-PE initiates TID veri�cation

(note that the TID veri�cation is not restricted by the changes suggested in Section 8.5

in this case because the transaction was not aborted by the TR-Resp-PE or TR-Resp-

User). The re-transmitted Ack(Tok) PDU can be received by the TR-Resp-PE, which

interprets it as a positive acknowledgment (i.e. proceed with this transaction). However,

the TR-Init-PE does not have an outstanding transaction|the TID veri�cation should

have resulted in the transaction being aborted.

This error is similar to that identi�ed in Section 8.5 where a second transaction is

started at the TR-Resp-PE as a result of a re-transmitted Invoke PDU. In that case

however, the success of the TID veri�cation is correct (the TR-Init-PE did have an

outstanding transaction). For this error the TID veri�cation is incorrect.

8.6.2 Suggested Changes to the TR-Protocol

The proposed �x to this problem is to further restrict when TID veri�cation can be

initiated. In Section 8.5.2 the interval W was introduced to restrict the initiation of

TID veri�cation after a transaction has been aborted by the TR-Resp-PE or TR-Resp-

User. We extend this restriction to apply after a transaction is completed by any means.

This includes a successful transaction and a transaction aborted by the TR-Init-PE or

TR-Init-User. In summary, after a transaction with TID x has been completed (i.e. the

TR-Resp-PE returns to the LISTEN state), TID veri�cation cannot be initiated for TID

x until after the interval W.

158

Whenever the TR-Resp-PE enters the LISTEN state, the timer must be started with

interval W. The changes to the state tables comprise the addition of actions to those

entries entering the LISTEN state. They are shown in Tables 8.21 to 8.24.

Event Condition Action Next State

3 RcvAbort Abort transaction LISTEN
Start timer, W

Table 8.21: Entry 3 of the TR-Resp-PE LISTEN state table (Table B.5) modi�ed to

restrict a TID veri�cation so an Ack(Tok) PDU is not misinterpreted

Event Condition Action Next State

4 RcvAbort Generate TR-Abort.ind LISTEN
Start timer, W

Abort transaction

Table 8.22: Entry 4 of the TR-Resp-PE INVOKE RESP WAIT state table (Table B.7)

modi�ed to restrict a TID veri�cation so an Ack(Tok) PDU is not misinterpreted

Event Condition Action Next State

7 RcvAbort Generate TR-Abort.ind LISTEN
Start timer, W

Abort transaction

Table 8.23: Entry 7 of the TR-Resp-PE RESULT WAIT state table (Table B.8) modi�ed

to restrict a TID veri�cation so an Ack(Tok) PDU is not misinterpreted

8.6.3 Changes to the TR-Protocol CPN

The TR-Protocol CPN can be updated to reect the changes to the TR-Protocol by:

� Modifying the inscriptions on the output arcs for the following transitions to

the place Responder to start the timer with interval W: RcvAbort on the page

R TIDOK WAIT; RcvAbort on the page R INVOKE RESP WAIT; RcvAbort on the

page R RESULT WAIT; and RcvAck, RcvAbort and RcvAck Cnf on the page

R RESULT RESP WAIT.

8.7 Summary

The TR-Protocol CPN in Chapter 7 is our initial model of the TR-Protocol, with sev-

eral small modi�cations. In this chapter we have de�ned the desired properties of the

TR-Protocol, and then analysed the CPN. The analysis has revealed errors in the TR-

Protocol, and we have suggested changes to remove the errors. The set of modi�cations

to the initial TR-Protocol CPN lead to a Revised TR-Protocol CPN, which is analysed

in Chapter 9.

159

Event Condition Action Next State

2 RcvAbort Generate TR-Abort.ind LISTEN
Start timer, W

Abort transaction
3 RcvAck CNF==1 Generate TR-Result.cnf LISTEN

Start timer, W

3a RcvAck CNF==0 Start timer, W LISTEN

Table 8.24: Entries 2, 3 and 3a of the TR-Resp-PE RESULT RESP WAIT state table

(Table B.9) modi�ed to restrict a TID veri�cation so an Ack(Tok) PDU is not misinter-

preted

The most important desired property of the TR-Protocol is that it provides the in-

tended service described in Chapter 6. This chapter has shown several cases where

comparing the TR-Protocol language with the TR-Service language has identi�ed errors

in the TR-Protocol.

The three errors identi�ed and �xed in this chapter (Sections 8.4, 8.5 and 8.6, respec-

tively) are:

1. The semantics of the Ack PDU and Result PDU are ambiguous, in that they can

be interpreted by the receiving TR-PE as either an acknowledgment from the peer

TR-User (i.e. a response primitive has been submitted) or only an acknowledgment

from the peer TR-PE (no response primitive submitted). Adding a new �eld to

each of the PDUs to indicate if the response primitive has been submitted can solve

this problem.

2. The TR-Resp-User can continue a transaction (i.e. receive a second TR-Invoke.ind

primitive) after aborting the transaction. Once aborted, a transaction should be

complete. This error can be �xed by disallowing the acceptance of unexpected

Invoke PDUs until a given time after the transaction has been aborted.

3. A re-transmitted Ack(Tok) PDU can erroneously acknowledge TID veri�cation

when the TR-Init-PE has no outstanding transaction. The solution to this problem

involves extending the previous solution so that an unexpected Invoke PDU cannot

be accepted until a given time after a transaction is ended by any means.

The intent of the suggested solutions is to improve the existing TR-Protocol so unex-

pected behaviour is eliminated, but at the same time, minimize the changes since imple-

mentations are already in use. Chapter 9 shows that the solutions do �x the problems,

and do not introduce any other errors.

160

Chapter 9

Veri�cation of the Revised

Transaction Protocol

A Coloured Petri net model of the Transaction Protocol, with a set of changes to solve the

errors described in Chapter 8, is presented in Appendix E. The analysis of the Revised

TR-Protocol is the topic of this chapter. The intent is to show the changes suggested do

indeed �x the problems found in the TR-Protocol, and that the Revised TR-Protocol is

functionally correct, for a given set of parameter values.

The analysis of the Revised TR-Protocol involves using state space and language anal-

ysis to prove the desired properties described in Chapter 8. The properties are: successful

termination; absence of deadlocks, livelocks and unexpected dead transitions; and, the

most important property, the faithful re�nement of the TR-Service of Chapter 6. These

properties must be proved for di�erent sets of parameter values, or con�gurations, of

the Revised TR-Protocol. Section 9.1 discusses the selection of the values. Section 9.2

discusses the analysis results obtained, and proves the desired properties. Section 9.3

presents results from using the sweep-line analysis method [31], an approach to tackle

the state explosion problem. Properties are proved for con�gurations \out of reach" of

ordinary state space analysis. Section 9.4 uses the analysis results of the preceding sec-

tions to conjecture about proving properties of the Revised TR-Protocol, independently

of particular parameter values. Section 9.5 closes this chapter with a discussion of results

obtained from analysing the Revised TR-Protocol.

Professor Jonathan Billington provided useful feedback on the results of this chapter.

The expression of Equation 9.4 as a polynomial instead of a summation is due to Professor

Billington. This also applies for Equation 9.5, although the �nal form is given in terms

of factorials.

161

9.1 Selection of Parameter Values

The Revised TR-Protocol has three parameters: the maximum values of the two counters

(RCRImax and RCRRmax), and the value of User Acknowledgment (UserAck) (see

Section 8.2.1). In theory, the two counter parameters are unbounded. The UserAck

parameter can only take the values of true (T) or false (F). Therefore, we must select

reasonable values for the counter parameters, so that the state space can be calculated

within memory limits, and a reasonable number of con�gurations are required to make

observations about the general behaviour. From the con�gurations analysed, the goal

is to inductively prove that the properties hold, so that the results are independent of

particular parameter values. As this is a complex task, we are also interested in proving

the properties for con�gurations likely to be used in practice. The WTP Speci�cation

gives several suggested values for the counter parameters: RCRImax and RCRRmax both

8 for bearers supporting IP; and 4 in GSM SMS networks [183].

Our �rst goal is to verify the Revised TR-Protocol for all con�gurations up to and

including that suggested for GSM SMS networks. That is, all permutations of the counter

parameters within the range of 0 to 4, for both UserAck On and O�, are considered.

This gives 2:52 = 50 con�gurations. Proving properties for these simple con�gurations

increases our con�dence that the Revised TR-Protocol operates correctly. However, this

approach of simply increasing the counter parameters is not suÆcient. The number of

con�gurations quickly becomes unmanageable, and as we see in Section 9.2, higher values

of the counter parameters exhaust the memory available when calculating the state space.

To investigate the TR-Protocol in more complex scenarios, properties must be able

to be veri�ed with some independence of the parameter values. This independence may

be achieved once the exact impact the parameters have on the Revised TR-Protocol

is known. From the 50 con�gurations chosen, a trend in the size of the state space

with respect to the parameter RCRRmax is observed. For the parameter RCRImax, our

intuition tells us that a relationship may be found if RCRImax is increased to higher

values (up to 10). However, the state space size becomes too large to calculate with these

higher values. Therefore, we employ the sweep-line method [31] to alleviate the state

explosion problem. Section 9.3 describes the analysis results using the sweep-line method

for these con�gurations with larger state space sizes. Section 9.4 then discusses how the

state space sizes relate to the parameter values.

9.2 State Space and Language Analysis

Design/CPN [109] and FSM [4] are used to calculate the state space and language analysis

results for the Revised TR-Protocol CPN. The con�gurations analysed are those with all

162

permutations of the counter parameters within the range of 0 to 4, for both UserAck

On and O�, except Con�guration 4-4-F (recall from Chapter 8 that the Con�guration is

given in the order of RCRImax, RCRRmax then UserAck). Results for this con�guration

are unobtainable on the computer used (further comments on the limits of the tool are

given in Appendix G). Also analysed are Con�gurations 5-0-T, 6-0-T and 7-0-T, the

relevance of which is discussed in Section 9.4.

Standard ML and shell scripts were written to automate the process of calculating the

state spaces of the set of con�gurations, minimizing the FSA and recording the relevant

statistics. Appendix F describes how this is achieved. In summary, a place and transition

(given in Figure F.1) are added to the CPN which are used to instantiate the parameter

values. This has no impact on the analysis results except to create one more node and

arc in the state space.

This section gives the results of the analysis, and discusses how they are used to

prove the desired properties of the Revised TR-Protocol. Section 9.2.5 also discusses the

bounds on the communication places.

9.2.1 Language Equivalence

Once the state space of a con�guration was calculated (see Section 9.2.2 for the statistics),

it was treated as a FSA, on which language analysis was performed. Listings E.3 and E.4

show the functions for mapping the state space to a FSA. As stated in Chapter 8, showing

that the TR-Protocol faithfully re�nes the sequences of events in the TR-Service is the

main purpose of the analysis.

Table 9.1 summarizes the statistics for the FSA and language calculated for all con-

�gurations (the complete set of results is given in Table E.1). Recall from Section 6.3.2

the number of sequences in the TR-Service language when UserAck is O� is 182 and

when UserAck is On is 130. Table 9.1 shows every con�guration with UserAck=T has

identical minimized FSAs and languages. The FSA has 19 nodes, 61 arcs and 2 halt

states, and the Revised TR-Protocol language contains 130 possible sequences of primi-

tives, the longest being 8 and the shortest 2 primitives. Comparison with the TR-Service

language (Chapter 6) reveals the two languages are identical (i.e. NIS=0 and NIP=0).

When UserAck=F, all con�gurations have identical FSAs (19 nodes, 63 arcs and 4 halt

states) and languages (182 sequences, longest is 8 and shortest is 2). Again, the Revised

TR-Protocol language is identical to the TR-Service language.

UserAck Nodes Arcs Halts Sequences Longest Shortest NIS NIP

On 19 61 2 130 8 2 0 0
O� 19 63 4 182 8 2 0 0

Table 9.1: Statistics for both Revised TR-Protocol FSAs and languages (cf. Table 6.6)

163

The language analysis shows that for all con�gurations analysed, the Revised TR-

Protocol faithfully re�nes the TR-Service, in terms of global sequences of service primi-

tives, proving Property 8.1.

9.2.2 Terminal Markings and Deadlocks

Table 9.2 gives the statistics of the state space size, in terms of number of nodes (N),

number of arcs (A) and calculation time in seconds (T), for each con�guration. Note that

a new place and transition is added to the CPN model to facilitate the batch analysis

(see Appendix F). Therefore, the number of nodes and number of arcs are one more than

if each were analysed individually. This does not a�ect the applicability of the results.

Further discussion on the relationship between the state space size and parameter values is

given in Section 9.4. Appendix G categorizes the performance of the state space analysis,

as a guide for other users of Design/CPN.

RCRmax UserAck=T UserAck=F

I R N A T TM DL N A T TM DL

0 0 105 304 0 28 0 198 606 1 55 0
0 1 234 700 1 68 0 542 1702 2 167 0
0 2 403 1232 1 124 0 1046 3342 3 343 0
0 3 612 1900 2 196 0 1710 5526 5 583 0
0 4 861 2704 3 284 0 2534 8254 8 887 0
1 0 513 1677 2 78 0 1009 3430 3 163 0
1 1 1180 3992 4 188 0 2817 9898 10 477 0
1 2 2061 7133 7 342 0 5481 19670 22 967 0
1 3 3156 11100 11 540 0 9001 32746 39 1633 0
1 4 4465 15893 16 782 0 13377 49126 62 2475 0
2 0 1872 6528 6 219 0 3796 13664 15 465 0
2 1 4407 15824 17 541 0 10762 39888 54 1389 0
2 2 7778 28502 33 995 0 21072 79640 130 2841 0
2 3 11985 44562 55 1581 0 34726 132920 259 4821 0
2 4 17028 64004 84 2299 0 51724 199728 446 7329 0
3 0 6032 21865 25 541 0 12545 46591 67 1178 0
3 1 14487 53614 76 1363 0 36023 136708 307 3566 0
3 2 25798 97025 162 2533 0 70925 273473 887 7346 0
3 3 39965 152098 297 4051 0 117251 456886 1961 12518 0
3 4 56988 218833 488 5917 0 175001 686947 3682 19082 0
4 0 17024 63597 99 1181 0 36165 137474 317 2630 0
4 1 41507 157145 348 3021 0 104777 404209 1799 8036 0
4 2 74450 285317 859 5661 0 207229 809440 6004 16642 0
4 3 115853 448113 1723 9101 0 343521 1353167 16242 28448 0
4 4 165716 645533 3022 13341 0 - - - - -
5 0 42561 163366 378 2315 0 - - - - -
6 0 96070 378206 1388 4178 0 - - - - -
7 0 199338 803527 5080 7056 0 - - - - -

Table 9.2: Statistics on the state space size, terminal markings and deadlocks for the

TR-Protocol con�gurations

Also included in Table 9.2 is the number of terminal markings (TM) and the number

of deadlocks (DL). A Standard ML query was applied to each dead marking calculated by

164

Design/CPN to determine if the marking was desired (terminal marking) or not (dead-

lock). The query, given in Section E.2, returns true if all dead markings are of the

form de�ned in Property 8.2. As Table 9.2 shows, all con�gurations of the Revised TR-

Protocol analysed, terminated successfully, and contained no deadlocks, therefore proving

Property 8.2.

9.2.3 Livelocks

Table 9.3 lists the statistics for the SCC Graph (number of nodes (N) and arcs (A)) of

each con�guration. (Also included are the bounds on the communication places, discussed

in Section 9.2.5.) A comparison with Table 9.2 shows that, for every con�guration the

size of the state space is equivalent to the size of the SCC Graph. Also, from inspection of

the CPN, the Revised TR-Protocol state space contains no self loops. This means there

are no cycles in the state space and, therefore, no livelocks (column LL in Table 9.3 lists

the number of livelocks). Property 8.3 has been proved for all analysed con�gurations of

the Revised TR-Protocol.

RCRmax UserAck=T UserAck=F

I R N A LL I2R R2I N A LL I2R R2I

0 0 105 304 0 2 3 198 606 0 2 3
0 1 234 700 0 2 4 542 1702 0 2 4
0 2 403 1232 0 3 5 1046 3342 0 3 5
0 3 612 1900 0 4 6 1710 5526 0 4 6
0 4 861 2704 0 5 7 2534 8254 0 5 7
1 0 513 1677 0 3 4 1009 3430 0 3 4
1 1 1180 3992 0 3 5 2817 9898 0 3 5
1 2 2061 7133 0 4 6 5481 19670 0 4 6
1 3 3156 11100 0 5 7 9001 32746 0 5 7
1 4 4465 15893 0 6 8 13377 49126 0 6 8
2 0 1872 6528 0 4 5 3796 13664 0 4 5
2 1 4407 15824 0 4 6 10762 39888 0 4 6
2 2 7778 28502 0 5 7 21072 79640 0 5 7
2 3 11985 44562 0 6 8 34726 132920 0 6 8
2 4 17028 64004 0 7 9 51724 199728 0 7 9
3 0 6032 21865 0 5 6 12545 46591 0 5 6
3 1 14487 53614 0 5 7 36023 136708 0 5 7
3 2 25798 97025 0 6 8 70925 273473 0 6 8
3 3 39965 152098 0 7 9 117251 456886 0 7 9
3 4 56988 218833 0 8 10 175001 686947 0 8 10
4 0 17024 63597 0 6 7 36165 137474 0 6 7
4 1 41507 157145 0 6 8 104777 404209 0 6 8
4 2 74450 285317 0 7 9 207229 809440 0 7 9
4 3 115853 448113 0 8 10 343521 1353167 0 8 10
4 4 165716 645533 0 9 11 - - - - -
5 0 42561 163366 0 7 8 - - - - -
6 0 96070 378206 0 8 9 - - - - -
7 0 199338 803527 0 9 10 - - - - -

Table 9.3: Statistics on the size of the SCC Graph, livelocks and bounds on the commu-

nication places for the Revised TR-Protocol con�gurations

165

9.2.4 Dead Transitions

Table 9.4 lists the dead transitions for each con�guration. The numbers in the header

row correspond to the transition numbers in Tables 8.3, 8.14 and 8.20. The total number

of dead transitions is also listed for each con�guration. Closer inspection reveals the

dead transitions for each con�guration are those expected (see Tables 8.3, 8.14 and 8.20).

Therefore, there are no unexpected dead transitions, proving Property 8.4 for all con�g-

urations analysed.

9.2.5 Upper Bounds on Communication Places

The upper integer bounds on the two communication places (i.e. the maximum number

of PDUs in the communication medium at any one time), InitToResp and RespToInit,

is an important statistic for the Revised TR-Protocol. It can be used, for example,

to dimension bu�ers in the design and implementation of the TR-PEs so that received

PDUs need not be discarded. During the state space analysis we recorded these bounds

for each con�guration (Table 9.3). The bounds on the InitToResp and RespToInit places

are referred to as I2R and R2I, respectively. Closer inspection of I2R and R2I reveals

they are related to the con�guration. Equations 9.1 and 9.2 show the relationship between

the bounds and parameters that hold for all con�gurations analysed.

I2R =

8<
: RCRImax + 2 if RCRRmax = 0

RCRImax +RCRRmax + 1 otherwise
(9.1)

R2I = RCRImax +RCRRmax + 3 (9.2)

As one would expect, the bounds depend on the maximum values of both of the re-

transmission counters, RCRImax and RCRRmax. The more times a TR-PE re-transmits

a PDU, the more number of PDUs can be in the communication medium.

For I2R (Equation 9.1), the TR-Init-PE can send an Invoke PDU (contributes 1 to

R2I) and then re-transmit the Invoke PDU if it hasn't received any response from the

TR-Resp-PE (contributes RCRImax to I2R). Then the TR-Init-PE may send an Abort

PDU (contributes 1 to I2R). This is the maximum number of PDUs that can be in the

communication channel if RCRRmax=0. If RCRRmax>0 then before the TR-Init-PE

sends the Abort PDU, it may receive the Result PDU from the TR-Resp-PE. The TR-

Init-PE can then send an Ack PDU (contributes 1 to I2R). For every re-transmitted

Result PDU received, the TR-Init-PE re-transmits Ack PDUs (contributes RCRRmax

to I2R). Note that after the TR-Init-PE has acknowledged the receipt of a Result PDU,

it cannot send an Abort PDU. Thus there are two parts to Equation 9.1: one when the

Abort PDU can be sent (RCRRmax=0), and the other when it cannot be sent.

166

Con�g DT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0-0-T 14 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0-1-T 12 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1
0-2-T 12 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1
0-3-T 12 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1
0-4-T 12 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1-0-T 7 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0
1-1-T 5 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0
1-2-T 5 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0
1-3-T 5 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0
1-4-T 5 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0
2-0-T 6 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0
2-1-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
2-2-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
2-3-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
2-4-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
3-0-T 6 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0
3-1-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
3-2-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
3-3-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
3-4-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
4-0-T 6 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0
4-1-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
4-2-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
4-3-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
4-4-T 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
5-0-T 6 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0
6-0-T 6 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0
7-0-T 6 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0
0-0-F 11 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1
0-1-F 9 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1
0-2-F 9 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1
0-3-F 9 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1
0-4-F 9 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1
1-0-F 5 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0
1-1-F 3 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1-2-F 3 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1-3-F 3 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1-4-F 3 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
2-0-F 4 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
2-1-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2-2-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2-3-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2-4-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3-0-F 4 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
3-1-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3-2-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3-3-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3-4-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4-0-F 4 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
4-1-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4-2-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4-3-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9.4: Dead transitions for the Revised TR-Protocol con�gurations

167

For R2I (Equation 9.2), the TR-Resp-PE can send an Ack PDU (contributes 1 to

R2I) after receiving the Invoke PDU, and re-transmit an Ack PDU every time it receives

a re-transmitted Invoke PDU from the TR-Init-PE (contributes RCRImax to R2I). The

TR-Resp-PE may then send the Result PDU (contributes 1 to R2I), which may be re-

transmitted RCRRmax times (contributes RCRRmax to R2I). Finally, the TR-Resp-PE

may send an Abort PDU (contributes 1 to R2I).

Further work is needed to determine the e�ects of other features, such as duplicates

and SAR, on these bounds (see Chapter 10).

9.3 Applying the Sweep-Line Method

Ordinary state space analysis has been suÆcient for proving the properties of simple

con�gurations of the Revised TR-Protocol CPN. Section 9.4 shows how the results of

Section 9.2 can be used as a �rst step towards verifying the properties independently of

the parameter values. But to do this, we require some additional results of con�gurations

that were \out of reach" of ordinary state space analysis, because of the state explosion

problem. The sweep-line method [31] is used to obtain the required results.

The sweep-line analysis is performed using Design/CPN [109] and a prototype im-

plementation of the Sweep-Line library [30]. The analysis process involves de�ning a

progress measure (Section 9.3.1), setting up the sweep-line algorithm to calculate prop-

erties and results on-the-y (Section 9.3.2), and then calculating the state space (the

results are given in Section 9.3.3). We have again made some arti�cial changes to the

TR-Protocol CPN to accommodate calculating a batch of state spaces (see Appendix F).

9.3.1 Progress Measure

For the sweep-line analysis to be applicable, we require a progress measure that never

decreases as we calculate the state space. That is, the progress measures of the successor

nodes of a node in the state space, node A, must be greater than or equal to the progress

measure of node A. It is also advantageous, in terms of the number of nodes that need

to be stored in memory at any one time, for the progress measure to partition the state

space into many, small groups (as opposed to, for example, having half the nodes of the

full state space with a progress measure of 1 and the other half with 2). For the Revised

TR-Protocol we use the counter values used by the TR-PEs in the progress measure

(we will denote them as RCRI and RCRR). The progress measure, given in Listing E.5,

never decreases during the execution of the Revised TR-Protocol CPN (Appendix E). In

general, the progress measure (PM) of a node is given by Equation 9.3. This has been

chosen so that a unique value of the PM is obtained for each permutation of the counters.

168

In the following we discuss how this is achieved, and the bene�ts of the progress measure.

PM = RCRI � (RCRRmax + 2) +RCRR (9.3)

Equation 9.3 calculates the progress measure from the two counter parameters, giving

RCRI the most signi�cance. That is, RCRI is given a weighting that makes it more than

the maximum value of RCRR. As only one transaction can be initiated by the TR-Init-

User, and the counters are not reset or decremented during a transaction, the progress

measure in Equation 9.3 will always be increasing as the state space is calculated. Shortly

we discuss how the progress measure is calculated after a transaction has been completed

(either successfully or aborted). This also explains the decision to add 2 to the maximum

counter value in the weighting, whereas adding 1 would normally be suÆcient.

Table 9.5 shows PM for di�erent values of the counters, when the Con�guration is

1-2-T. As the two counters increase, so does PM. For a comparison, the fourth column

(Sum) gives the value of the progress measure if a summation without weightings is used

(i.e. RCRI+RCRR).

RCRI RCRR PM Sum

0 0 0 0
0 1 1 1
0 2 2 2
1 0 4 1
1 1 5 2
1 2 6 3

Table 9.5: Example progress measure for Con�guration 1-2-T

The e�ectiveness of the sweep-line method depends on the number of nodes with

unique progress measures, and the rate at which garbage collection is performed. The

goal is to delete as many nodes as possible when garbage collection occurs. Equation 9.3

partitions the state space into more (and smaller) groups of nodes with the same progress

measure than, say a progress measure calculated from the sum of the counter values (cf.

the Sum column in Table 9.5). However, the ordering of the counters signi�cance is

arbitrary. Further investigation into optimal progress measures and garbage collection

rates is required (see Chapter 10 and Appendix G).

While a transaction is in progress, the transaction data in the Initiator and Responder

places store the counter values. During state space generation, the marking of these

places can be inspected to calculate the progress measure. However, when the place

TempState on page I RW RcvResult Cnf (Figure E.7) contains a token, Initiator does not.

In these markings, the counter values are taken from TempState instead of Initiator. The

calculation of PM is unchanged.

When a transaction is aborted or successfully completed, the TR-PEs re-enter their

initial states (NULL and LISTEN), and the counters are re-set to their default values

169

(0). This violates the requirement for increasing counters. For example, if the PM is 2

from Table 9.5 and the TR-Resp-PE aborts the transaction, RCRR is set to 0, giving a

PM of 0. To overcome this, on completion of a transaction at a TR-PE, the value of the

re-transmission counter used in the calculation of the progress measure is set to one more

than its maximum value. Returning to the example, after the TR-Resp-PE aborts, the

value RCRR used in Equation 9.3 is 3 (RCRRmax+1) (although its actual value is 0).

This gives PM=3, which is greater than the maximum value of any PM when RCRI is 0.

As the counter values can be set to one more than their maximum value, the weighting

in Equation 9.3 is calculated from the maximum value plus 2 (RCRRmax+2). Table 9.6

updates the progress measures from Table 9.5 with the values used in Equation 9.3 when

either or both TR-PEs have completed the transaction.

Status RCRI RCRR PM

In progress 0 0 0
In progress 0 1 1
In progress 0 2 2

TR-Resp-PE complete 0 3 3
In progress 1 0 4
In progress 1 1 5
In progress 1 2 6

TR-Resp-PE complete 1 3 7
TR-Init-PE complete 2 0 8
TR-Init-PE complete 2 1 9
TR-Init-PE complete 2 2 10
Both TR-PEs complete 2 3 11

Table 9.6: Example progress measure for Con�guration 1-2-T including values for com-

pleted transactions

The markings of UserAck and First are used to determine whether the TR-Init-PE or

TR-Resp-PE have completed the transaction. When UserAck is empty, and the value of

RCRI is 0, the TR-Init-PE has completed the transaction. When the marking of First is

1`F, and the value of RCRR is 0, the TR-Resp-PE has completed the transaction.

9.3.2 Properties Investigated

The advantage of the sweep-line method over ordinary state space analysis is that less

nodes need to be stored at any one time. In ordinary state space analysis, the full state

space is stored in memory, and then queries can be made to verify properties (e.g. dead

markings, bounds). Using the sweep-line method, properties must be proved on the

y (i.e. during the calculation of the state space). For the Revised TR-Protocol CPN,

collecting data to prove successful termination (Property 8.2) and absence of unwanted

dead transitions (Property 8.4) is straightforward. To obtain the Revised TR-Protocol

language, the arcs of the state space must be written to a �le on-the-y. This creates

signi�cant processing overhead, but memory consumption is still reduced in comparison

170

to ordinary state space analysis. Our approach of using the SCC graph to prove the

absence of livelocks (Property 8.3) is not suited to sweep-line analysis, because the SCC

graph is calculated from the full state space. This is a limitation of the approach.

Design/CPN's Sweep-Line Library [30] was only in a prototype form when �rst used.

There was no support for proving properties on-the-y. Lars Kristensen implemented the

functionality to check the desired properties of the Revised TR-Protocol. The Standard

ML code and a description is given in Appendix E.

9.3.3 Results of Sweep-Line Analysis

The con�gurations of the Revised TR-Protocol analysed using the sweep-line method are:

4-4-F, 0-8-T, 0-9-T and 0-10-T. The �rst con�guration is part of the set of con�gurations

up to, and including the suggested maximum counter values for GSM SMS networks

[183]. The choice of the latter three con�gurations will become apparent in Section 9.4.

Garbage collection is performed every 10000 nodes. This was an estimate to minimize

processing overhead and memory usage based on results from other applications of the

sweep-line method [31].

For the con�gurations analysed using the sweep-line method, the language of the

Revised TR-Protocol was equivalent to the corresponding language of the TR-Service

(see Table 9.7), proving Property 8.1.

Con�g N A H Seq L S NIS NIP

4-4-F 19 63 4 182 8 2 0 0
8-0-T 19 61 2 130 8 2 0 0
9-0-T 19 61 2 130 8 2 0 0
10-0-T 19 61 2 130 8 2 0 0

Table 9.7: Statistics on the size of the language for the Revised TR-Protocol con�gura-

tions using sweep-line analysis

Table 9.8 lists the state space statistics, number of terminal markings and deadlocks

and bounds on the communication places measured during the sweep-line analysis. As

well as the nodes (N), arcs (A) and calculation time (T), the statistics include the

maximum number of nodes stored at any one time (Stored) and the reduction when

compared to ordinary state space analysis. This may be used as a guide to the amount

of memory saved using the sweep-line method, although there are other factors that

inuence this (e.g. the amount of memory per node may increase when getting deeper

into the state space).

As well as proving Property 8.2 (Successful Termination), Table 9.8 shows the sweep-

line method can result in savings of the order of 50% of memory. This is particularly useful

for the Revised TR-Protocol. Appendix G evaluates the performance enhancements of

the sweep-line method (in terms of memory and time saved) in more detail.

171

Con�g N Stored Reduction A T TM DL I2R R2I

4-4-F 513653 322632 37% 2035390 12289 43454 0 9 11
8-0-T 385848 196143 49% 1589883 5607 11306 0 10 11
9-0-T 704881 334327 53% 2963984 14056 17348 0 11 12
10-0-T 1226460 554059 55% 5254414 34369 25685 0 12 13

Table 9.8: State space statistics, dead markings and bounds for the Revised TR-Protocol

con�gurations when sweep-line analysis used

Table 9.9 shows the dead transitions for the con�gurations analysed using the sweep-

line method. These are all expected transitions, proving Property 8.4 (Absence of Unex-

pected Dead Transitions). Property 8.3 (Absence of Livelocks) has not been proved for

these con�gurations.

Con�g DT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4-4-F 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-0-T 6 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0
9-0-T 6 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0
10-0-T 6 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0

Table 9.9: Dead transitions for the Revised TR-Protocol con�gurations using sweep-line

analysis

9.4 Impact of Parameters on State Space Size

State spaces have been calculated for a total of 56 con�gurations using both ordinary

state space (Section 9.2) and sweep-line analysis (Section 9.3). These con�gurations have

covered the following range of parameter values:

� all permutations of the counter parameters (RCRImax and RCRRmax) with the

values 0, 1, 2, 3 and 4, for both UserAck set to T and F; and

� RCRImax increased from 5 to 10 when RCRRmax=0 and UserAck=T.

For all the analysed con�gurations we have proved that the TR-Protocol: a) re�nes

the TR-Service (Property 8.1); b) terminates successfully (Property 8.2); and c) does not

contain unwanted dead transitions (Property 8.4). For all con�gurations except those

analysed using the sweep-line method (see Section 9.3), absence of livelocks has also been

proved (Property 8.3).

The increase in the size of the state space that can be calculated using the sweep-line

method is promising, but is not enough for more complex con�gurations of the Revised

TR-Protocol. For example, the WTP Speci�cation suggests 8 as a default value for

RCRImax and RCRRmax in an IP network [183]. A rough estimate puts the number of

172

nodes for Con�guration 8-8-T at 10,000,0001. Furthermore, including the possibility of

errors in the CPN model (e.g. duplicates, losses) is likely to lead to further explosion of

the state space. Clearly, the brute force approach of calculating the state space for more

complex con�gurations is not adequate.

In this section we use the state space and sweep-line analysis results to make observa-

tions regarding the dependence of the state space size on the con�guration parameters.

This is a step towards the desirable situation of having a CPN that models the Revised

TR-Protocol independently of the parameter values (or at least the counters), but still

captures the e�ects of the parameters on behaviour. This was achieved for the acknowl-

edgment expiration counter (AEC), however it is not clear what the best approach is for

RCR. Our parameterized Revised TR-Protocol CPN has served not only as a platform for

proving properties of speci�c con�gurations, but also for experimenting with the e�ects

of the parameters on the TR-Protocol. The observations in the remainder of this section

are based on these experiments. Due to time limitations, some of the observations (espe-

cially for RCRImax) remain just that, in that no attempt has been made to prove them.

This is an area for future research.

9.4.1 UserAck

There are no clear relationships between the size of the state space and the UserAck

parameter. However, we do know that there is some commonality of the Revised TR-

Protocol when UserAck is T and F and, therefore, expect much of the state space to be

common. It may be that modelling UserAck as a non-deterministic choice (as opposed

to setting it to either T or F) will not dramatically increase the state space size. Further

investigation of this is required.

9.4.2 RCRRmax

For RCRRmax there is a clear relationship observed with it and the size of the state space.

As an example, Table 9.10 shows the number of nodes for di�erent values of RCRRmax

when RCRImax is 0 and UserAck=T. The trend observed is that the di�erence between

the number of nodes when RCRRmax= r and RCRRmax= r+1 always increases by 40 as

r increases. Similar trends are also observed for the number of arcs, and for con�gurations

when RCRImax is set to 1, 2, 3 and 4 and UserAck=F. Equation 9.4 characterizes these

trends. C is either the number of nodes (N) or number of arcs (A). The constants C0,

XC and YC are given in Table 9.11.

1The rate of increase in the number of nodes when RCRRmax is 0 and RCRImax=0. . . 8 is used to
extrapolate the rate of increase when RCRRmax=8 for RCRImax=5. . . 8 (the number of nodes when
RCRImax=0. . . 4 and RCRRmax=8 are calculated from Equation 9.4 in Section 9.4.2).

173

RCRRmax (r) Nodes (N) X = Nr+1 �Nr Y = Xr+1 �Xr

0 105 129 40
1 234 169 40
2 403 209 40
3 612 249 -
4 861 - -

Table 9.10: Change in number of state space nodes when varying RCRRmax

Cr =
YC

2
r2 + (XC �

YC

2
)r + C0 (9.4)

UserAck RCRImax Nodes Arcs

N0 XN YN A0 XA YA

T 0 105 129 40 304 396 136
1 513 667 214 1677 2315 826
2 1872 2535 836 6528 9296 3382
3 6032 8455 2856 21865 31749 11662
4 17024 24483 8460 63597 93548 34624

F 0 198 344 160 606 1096 544
1 1009 1808 856 3430 6468 3304
2 3796 6966 3344 13664 26224 13528
3 12545 23478 11424 46591 90117 46648
4 36165 68612 33840 137474 266735 138496

Table 9.11: Constants for Eq. 9.4 when varying UserAck and RCRImax

Equation 9.4 �ts the empirical data obtained from analysing the con�gurations of the

Revised TR-Protocol. If it can be proved that the equation holds for all con�gurations

(e.g. when RCRImax and RCRRmax are greater than 4), then the state space size can be

obtained from the equation. For example, for Con�guration 2-8-F, the number of nodes

and arcs in the state space can be calculated from Equation 9.4 as follows:

Nr =
YN

2
r2 + (XN �

YN

2
)r +N0

N8 =
3344

2
82 + (6966�

3344

2
) 8 + 3796

= 153156

Ar =
YA

2
r2 + (XA �

YA

2
)r + A0

A8 =
13528

2
82 + (26224�

13528

2
) 8 + 13664

= 602240

To increase our con�dence in the applicability of Equation 9.4, Con�guration 2-8-F

has been analysed, and the state space does indeed have 153156 nodes and 602240 arcs.

Listing 9.1 shows the state space report for this con�guration.

174

Listing 9.1: State space report generated by Design/CPN for Con�guration 2-8-F of the

Revised TR-Protocol CPN

1 Statistics

2 ��������������������������������
3 Occurrence Graph

4 Nodes: 153156

5 Arcs : 602240

6 Secs : 2042

7 Status : Full

8

9 Scc Graph

10 Nodes: 153156

11 Arcs : 602240

12 Secs : 223

13

14 Liveness Properties

15 ��������������������������������
16 Dead Markings: 22641 [996,99330,99329,9900,99,...]

17 Dead Transitions Instances :

18

19 I RESULT RESP WAIT'TimerTO A Max 1

20 R INVOKE RESP WAIT'TimerTO A Max 1

Proving Equation 9.4 holds for all con�gurations requires an understanding of how

RCRRmax impacts the state space. The value of RCRRmax determines the number

of times transition TimerTO R occurs (R RESULT RESP WAIT page, Figure E.14). This

transition re-transmits a Result PDU. The Result PDU can be received by the TR-Init-

PE while its in the RESULT WAIT state (see Figure E.6) or the WAIT TIMEOUT state

(Figure E.9). Further investigation of the inuence of the re-transmitted Result PDU on

the Revised TR-Protocol is required to determine if a more abstract model of RCRRmax

can be used (e.g. if the properties are proved when a single re-transmission occurs, then

can we inductively prove the properties for all other re-transmissions?).

9.4.3 RCRImax

For the parameter RCRRmax, trends were observed from calculating the state space

with the values ranging from 0 to 4. The size of the state spaces were all within the

capabilities of Design/CPN on the computer used. For RCRImax, no clear trend was

observed for this range of values, except that the state space size increased more rapidly

than for RCRRmax. However, analysing con�gurations for greater values of RCRImax

(when RCRRmax=0 and UserAck=T) has given strong evidence of a trend similar to

that observed for RCRRmax. Ordinary state space analysis was used for RCRImax with

values 5, 6 and 7, and sweep-line analysis for values 8, 9 and 10. Table 9.12 shows the

number of nodes for these con�gurations.

Table 9.12 shows the number of nodes increases much faster than for RCRRmax. The

175

RCRImax (i) Nodes (N) T U V W X Y Z

0 105 408 951 1850 2181 1501 531 83
1 513 1359 2801 4031 3682 2032 614 76
2 1872 4160 6832 7713 5714 2646 690 76
3 6032 10992 14545 13427 8360 3336 766 76
4 17024 25537 27972 21787 11696 4102 842 -
5 42561 53509 49759 33483 15798 4944 - -
6 96070 103268 83242 49281 20742 - - -
7 199338 186510 132523 70023 - - - -
8 385848 319033 202546 - - - - -
9 704881 521579 - - - - - -
10 1226460 - - - - - - -

Table 9.12: Change in number of state space nodes for RCRRmax=0 and UserAck=T

di�erences between the successive con�gurations' number of nodes are shown in column

T, the di�erences between successive values in column T are shown in column U, and

so on. The �nal column, Z, indicates a possible relationship between number of nodes

and RCRImax, although RCRImax=0 is an exception. Equation 9.5 gives the number of

nodes in the state space for i = 1 : : : 10, where i is RCRImax. The constants are given in

the row where RCRImax=1 in Table 9.12. Note that when the subject of the factorial

evaluates to a negative number in the denominator, the fraction becomes 0.

Ni+1 = N1 + T1i + (9.5)

i!

U1

2!(i� 2)!
+

V1

3!(i� 3)!
+

W1

4!(i� 4)!
+

X1

5!(i� 5)!
+

Y1

6!(i� 6)!
+

Z1

7!(i� 7)!

!

As an example, to calculate the number of nodes for Con�guration 4-0-T, we have:

N4 = N1 + 3T1 + 3!
U1

2! 1!
+ 3!

V1

3! 0!
= 513 + 3:1359 + 3:2801 + 4031

= 17024

Note that Equation 9.5 only applies for the nodes. The arcs do not �t this equation.

The four corresponding values of Z for the arcs are 498, 459, 460 and 462. For i = 1 : : : 10,

where the di�erence of the Z values for the number of nodes is 0, for arcs the di�erence

is 1 (i.e. 460� 459), then 2 (i.e. 462� 460). With RCRImax set to 11 or 12, we may be

able to better observe the relationship for arcs.

Equation 9.5 may also be expressed as a 7th order polynomial in i (i � 7), clearly

showing the relationship between RCRImax and the number of nodes and arcs is more

complex than for the parameter RCRRmax (which is quadratic). (Equation 9.5 is ex-

pressed in terms of factorials for readability, as the coeÆcients of the polynomial are

176

non-trivial.) This is because RCRImax determines the number of times an Invoke PDU

(transition TimerTO R in Figure E.6) or Ack(Tok) PDU (transitions TimerTO R Tve and

RcvAck Tve in Figure E.6) may be re-transmitted. These re-transmitted PDUs have an

impact on the remainder of the CPN, which has yet to be determined. This is an area

for future work (Chapter 10).

9.5 Summary

Three errors were discovered, and �xes suggested, in the TR-Protocol in Chapter 8.

In this chapter the Revised TR-Protocol, which incorporates the �xes, was analysed.

The analysis in Section 9.2 has shown that for a set of con�gurations leading up to the

suggested con�guration for a GSM SMS network [183] (Section 9.1), the Revised TR-

Protocol provides the intended TR-Service, successfully terminates, and does not contain

livelocks nor unwanted state table entries. These properties give high con�dence that the

design of the Revised TR-Protocol is functionally correct.

In a �rst step towards extending the analysis results to other con�gurations, sweep-

line analysis was used to calculate state spaces that have sizes out of reach of ordinary

state space analysis (Section 9.3). The results were then used to determine relationships

between the state space size and the parameter values (Section 9.4). Further work is

necessary to see if the trends observed can be used to inductively prove properties of

the Revised TR-Protocol, giving results that are independent of the values of the two

parameters RCRImax and RCRRmax.

We have now reached our aim of verifying the Wireless Transaction Protocol, albeit

only once several changes were made to the WTP Speci�cation [183] and for a small set

of con�gurations. Steps have been made towards a more general veri�cation which is

independent of speci�c parameter values. It is envisaged the results presented will be

used to improve the design of the WAP architecture, and subsequent implementations,

resulting in a stable and reliable system for providing mobile data services.

177

Chapter 10

Conclusions

10.1 Contributions of the Dissertation

The Wireless Transaction Protocol has recently been de�ned and updated [183, 187],

but as far as we are aware there have been no other published attempts at verifying the

correctness of the design. This thesis presents several key results from the veri�cation

procedure applied to WTP Class 2.

10.1.1 Service Speci�cation

In the WTP Speci�cation [183], the Transaction Service is described using narrative de-

scriptions and a table specifying when a service primitive can immediately follow another.

A critique of the existing TR-Service has been given, identifying the following problems:

� the TR-Invoke and TR-Result con�rmation primitives do not exhibit end-to-end

behaviour, in that, for example, a con�rmation of the TR-Invoke can be delivered

to the TR-Init-User without the TR-Resp-User acknowledging the TR-Invoke (with

a response);

� there is no complete de�nition of when a transaction ends, either successfully or as

a result of an abort; and

� the purpose of the TR-Abort primitive is not clear (e.g. the TR-Init-User should

not be able to submit a TR-Abort primitive after acknowledging the result).

These problems were clari�ed by introducing �ve assumptions (Assumptions 6.4 to

6.8) that, along with the table in the WTP Speci�cation, de�ne the legal sequences rep-

resenting successful transactions (when user acknowledgment is On or O�) and aborted

transactions, and when TR-Abort primitives can be submitted by, or delivered to, the

TR-Init-User or TR-Resp-User. (The latter two ambiguities were presented, along with

a CPN model and language of the service, in [54].)

178

A Coloured Petri net of the Transaction Service was developed for the purpose of au-

tomatically generating all possible sequences of service primitives, and to give con�dence

that the sequences accurately represent the behaviour in practice. The state space of the

CPN was used to obtain two Transaction Service languages: one when the User Acknowl-

edgment (UserAck) feature is On, and the other when UserAck is O�. The languages are

used as a basis for the veri�cation of the Transaction Protocol (Section 10.1.3).

10.1.2 Protocol Speci�cation

The Transaction Protocol is described by a set of state tables in the WTP Speci�cation

[183]. A CPN model of the Transaction Protocol, based on these state tables for valida-

tion purposes, was developed. The model was tailored towards the veri�cation task, by

introducing a set of simpli�cations and restrictions. The simpli�cations do not limit the

applicability of the analysis results, whereas the restrictions do. The restrictions are:

� only Class 2 transactions of WTP version 1.2.1 (given in [183]) are modelled, Class

0 and 1 transactions are omitted and so is the version handling protocol feature;

� the segmentation and re-assembly protocol feature is not modelled; and

� the Transport Service provider is assumed error free (i.e. no corruption, losses or

duplicates, although overtaking is allowed), and has in�nite capacity.

A set of 10 assumptions were made due to errors being present in the WTP Speci�-

cation. These include:

� conditions in state table entries being incomplete, in that the conditions for two

di�erent entries with the same event are not mutually exclusive when the actions

suggest they must be;

� no speci�cation of actions upon the receipt of PDUs in some states (see Table 7.2),

when the PDUs can be received in these states;

� the counter RCR going above its maximum value when the TR-Init-PE receives

an Ack(Tve) PDU after re-transmitting the Invoke PDU or Ack(Tok) PDU the

maximum possible number of times;

� a TR-User not being noti�ed of the end of a transaction (via the delivery of a TR-

Abort.ind primitive) when the TR-PE aborts due to no response (within a given

time limit) from the TR-User; and

� a TR-Result.req primitive being submitted by the TR-Resp-User before a TR-

Invoke.res primitive, when UserAck is On.

179

Several of these errors, along with an initial CPN model of the protocol, were presented

in [56]. They were also submitted to the WAP Forum [55], who followed the suggestions

for improving the protocol, as can be seen in Version 2.0 of WTP [187].

10.1.3 Analysis of the Protocol

Four desired properties of the Transaction Protocol, which give a high level of con�-

dence in its design, were de�ned. They are: faithful re�nement of the service (language

equivalence between protocol and service); successful termination (including absence of

deadlocks); absence of livelocks; and absence of un-used state table entries (dead transi-

tions in the CPN).

Generation of the state space and language from the CPN, and comparison with the

corresponding TR-Service language, revealed further errors in the TR-Protocol. The

errors, and proposed solutions that led to a Revised TR-Protocol (Section 10.1.4), are:

� The Ack and Result PDUs are ambiguous, in that they do not correctly convey

whether or not the peer TR-User has acknowledged an invocation or a result. For

example, the TR-Init-User can be delivered the TR-Invoke.cnf primitive, without

the TR-Resp-User submitting the TR-Invoke.res primitive.

Solution: Both the Ack PDU and Result PDU require a new 1-bit header �eld,

called CNF. When set to 1 in a PDU sent by a TR-PE, the CNF �eld indicates that

the TR-User has submitted an acknowledgment (i.e. a response primitive). When

set to 0, CNF indicates the acknowledgment is only from the TR-PE, i.e. the TR-

User has not submitted an acknowledgment. The state tables are modi�ed so that

there are entries that receive these PDUs with CNF set to 0 or 1, and the relevant

primitive is delivered to the TR-User, if necessary.

� When the TR-Resp-PE receives a re-transmitted Invoke PDU with TID x after it

has aborted transaction with TID x, the TR-Resp-PE initiates TID veri�cation. If

the TR-Init-PE still has transaction x outstanding (e.g. it has received no noti�ca-

tion of the abort by the TR-Resp-PE), then the TID veri�cation will be successful,

and the TR-Resp-PE will re-start transaction x, delivering a second TR-Invoke.ind

primitive to the TR-Resp-User. This is an error because only one TR-Invoke.req

primitive has been submitted by the TR-Init-User.

Solution: We introduce a period, W, which the TR-Resp-PE must wait before it

can re-start transaction x (which was previously aborted). A timer begins with the

interval W after the TR-Resp-PE or TR-Resp-User aborts transaction x. The TR-

Resp-PE cannot initiate TID veri�cation upon receipt of an Invoke PDU with TID

x while the timer is running. Hence, the second TR-Invoke.ind cannot be delivered

180

to the TR-Resp-User. The value of W must be greater than the maximum packet

lifetime (MPL) for the network (but should be less than 4MPL) so that all re-

transmitted or duplicated Invoke PDUs with TID x have been discarded when the

timer expires.

� After a successful transaction (with TID x), or a transaction aborted by the TR-

Init-PE, a re-transmitted Invoke PDU with TID x may be received by the TR-Resp-

PE initiating TID veri�cation. If a re-transmitted Ack(Tok) PDU with TID x is

also received by the TR-Resp-PE, then it is treated as a successful acknowledgment

of TID veri�cation. This is an error because the TR-Init-PE has no outstanding

transaction with TID x.

Solution: We now start the waiting period suggested in the previous proposal after

a transaction is completed by any means (including the TR-Init-PE aborting the

transaction, or the transaction being successful). This ensures any re-transmitted

Invoke PDUs cannot initiate TID veri�cation, therefore preventing the misinterpre-

tation of a re-transmitted Ack(Tok) PDU.

10.1.4 Revised Protocol and its Veri�cation

The changes suggested to correct errors in the Transaction Protocol are implemented, giv-

ing rise to the Revised Transaction Protocol (and corresponding CPN). To demonstrate

the proposed solutions are valid, and increase con�dence that the Revised TR-Protocol

is functionally correct, state space and language analysis of the Revised TR-Protocol was

performed. The analysis proved that the Revised TR-Protocol satis�ed the four desired

properties (see Section 10.1.3)1 for the following ranges of initial parameter values:

� UserAck is T or F, and all permutations of RCRImax and RCRRmax taking the

values 0, 1, 2, 3 and 4. The suggested values of the counter parameters in a GSM

SMS network are both 4 [183], so this provides a practical result of commercial

signi�cance.

� UserAck is T, RCRRmax=0 and RCRImax is increased from 5 to 10.

10.1.5 Closed Form Solutions for the Size of the State Space

Trends in the size of the state space were observed from the range of initial con�gurations

of the Revised TR-Protocol that were analysed. Closed form solutions for the number of

nodes and arcs of the state spaces, in terms of the maximum counter value RCRRmax,

1Absence of livelocks was not proved for Con�guration 4-4-F or when RCRImax is greater than 7.

181

have been given, for when RCRImax=0. . . 4 and UserAck is T or F (see Equation 9.4). A

similar solution (Equation 9.5) has been given for the number of nodes when RCRImax

increases from 1 to 10 (for RCRRmax=0 and UserAck=T).

10.1.6 Application of the Sweep-Line Method

This is one of the �rst applications of the sweep-line method to a case study of signi�cant

size, and indeed the �rst for the domain of distributed transaction protocols. (The

only other such case studies we are aware of are presented in [31].) In particular, for

the Revised TR-Protocol, sweep-line analysis has allowed the proof of properties for

con�gurations with state spaces with more than 1 million nodes. This is approximately

double the number of nodes that can be calculated using ordinary state space analysis.

Therefore, for this application, the sweep-line method has been useful for obtaining new

results. However, it is not suÆcient on its own to seriously tackle the state explosion

problem.

10.2 Future Work

10.2.1 Obtaining Results for Arbitrary Parameter Values

The trends in the state space size observed in Chapter 9 indicate that it is likely that the

number of markings can be computed from a closed form expression involving the input

parameters. Further investigation should be made to determine the validity of these

expressions for arbitrary values of RCRImax and RCRRmax. Once known, abstractions

of the parameters may be able to be used in the Revised TR-Protocol CPN, giving

analysis results with a wider applicability. This may facilitate proofs by induction to

allow the results to be generalised for any values of the input parameters.

10.2.2 Relaxing Restrictions on the Revised TR-Protocol CPN

Three restrictions were imposed on the TR-Protocol CPN to simplify the analysis (Chap-

ter 7). The Revised TR-Protocol should be investigated with these restrictions relaxed,

and eventually removed. The model of the Transport Service provider (i.e. the com-

munication places) can be modi�ed to include loss and duplication of PDUs (e.g. using

transitions that arbitrarily remove and/or duplicate PDU tokens in the communication

places). A more detailed model of the bu�ers and state table pages is required if seg-

mentation and re-assembly of PDUs is allowed. Finally, it should be possible to obtain

results for Class 0 and Class 1 transactions from the current work, as, in most cases,

the features are a subset of those already present in Class 2. After including transitions

182

that model the state table entries used by the Class 0 and 1 transactions, a parameter

or non-determinism could be used in the CPN to select a class of transaction.

10.2.3 The Sweep-Line Method and Other Analysis Techniques

To alleviate the problems of state space analysis, other analysis techniques should be

investigated. The sweep-line method has been useful for this application, achieving re-

ductions in the amount of memory used of approximately 50%. However, little e�ort has

been put into examining alternative progress measures or garbage collection mechanisms.

Currently, the progress measure only uses the values of the two re-transmission counters.

A progress measure with �ner granularity (i.e. less nodes have the same progress value)

may be obtained if the state names of the protocol entities are also used. A greater

reduction may then result. Other state space reduction techniques, such as stubborn sets

[162, 96], may also prove useful.

10.2.4 Other Protocol Engineering Activities

This thesis has focused on verifying the TR-Protocol (and the subsequently Revised TR-

Protocol) against the TR-Service. Other activities in the protocol engineering methodol-

ogy may also be applied. The current CPN model could be easily modi�ed to represent

a formal speci�cation of the Revised TR-Protocol by including all PDU header �elds

and primitive parameters. Performance evaluation of the Wireless Transaction Protocol

is a vital step (especially for evaluating the impact of the changes to the TR-Protocol

suggested in Chapter 8), which may be performed by augmenting the CPN with time

[87]. Automatic code generation may be used to produce a veri�ed implementation from

the CPN. Experiments may be undertaken with this implementation as another method

for investigating the performance, or it may be used as a baseline implementation when

testing other implementations for interoperability. Finally, test cases may be generated

from the veri�ed formal speci�cation for conformance testing.

10.2.5 Maintenance of the Revised TR-Protocol CPN

The modelling and analysis reported in this thesis has been of the June 2000 Conformance

Release of the Wireless Transaction Protocol [183]. Version 2.0 is the latest version of

WTP [187]. The Revised TR-Protocol CPN will need to incorporate any changes in

Version 2.0. (Preliminary investigations into Version 2.0 suggests the changes are minor.)

More importantly, the CPN model should be designed with maintainability in mind, to

support further updates. From our experience with updating the CPN from Version 1.0

[172], changes such as new state table entries are well supported in the model. The

183

possibility of incrementally analysing the CPN [100], so the existing results can be re-

used, should also be investigated. This may prove fruitful for analysing the Revised

TR-Protocol with the Segmentation and Re-assembly (SAR) protocol feature, as SAR

may be able to be treated with some independence of other features.

10.2.6 Generalisation to Other Transaction Protocols

Considerable e�ort has been spent on investigating the Wireless Transaction Protocol. It

may be that some of the ideas (especially modelling patterns and conventions), models

and results can be applied to other transaction protocols (e.g. T/TCP [20], IOTP [23],

SIP [65]). The TR-Service is a reasonable starting point for de�ning a general transaction

service. However, the requirements of users of other transaction protocols may also need

to be incorporated. Although the details of a protocol may be speci�c to a domain,

there will be some features of transaction protocols in common. Identifying, modelling

and analysing such features, both individually and as a whole (for which the Revised

TR-Protocol CPN may be of use), would be bene�cial.

184

References

[1] M. Allman, D. Glover, and L. Sanchez. Enhancing TCP over satellite channels us-

ing standard mechanisms. IETF RFC 2488 URL: ftp://ftp.isi.edu/in-notes/

rfc2488.txt, Jan. 1999.

[2] T. Arts. Private communication, 24 Nov. 1999.

[3] Assoication of Radio Industries and Businesses (ARIB). Web site: http://www.

arib.or.jp/ [Last accessed: 23 Nov. 2001], 9 Aug. 2001.

[4] AT&T. FSM Library. Web site: http://www.research.att.com/sw/tools/fsm

[Last accessed: 23 Nov. 2001].

[5] AT&T. GraphViz. Web site: http://www.research.att.com/sw/tools/

graphviz [Last accessed: 23 Nov. 2001].

[6] AT&T. Lextools. Web site: http://www.research.att.com/sw/tools/lextools

[Last accessed: 23 Nov. 2001].

[7] H. Balakrishnan. Challenges to Reliable Data Transport over Heterogeneous Wire-

less Networks. PhD thesis, Electrical Engineering and Computer Sciences Depart-

ment, University of California, Berkeley, CA, Aug. 1998.

[8] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz. A comparison

of mechanisms for improving TCP performance over wireless links. IEEE/ACM

Transactions on Networking, 5(6):756{769, Dec. 1997.

[9] W. A. Barret, R. Bates, D. Gustafson, and J. D. Couch. Compiler Construction:

Theory and Practice. Science Research Associates, second edition, 1986.

[10] M. Y. Bearman, M. C. Wilbur-Ham, and J. Billington. Speci�cation and analysis

of the OSI Class 0 Transport Protocol. In Proceedings of the 7th International

Conference on Computer Communications, pages 602{607, Sydney, Australia, 30

Oct.{2 Nov. 1984. North-Holland.

[11] H. Beker and F. Piper. Cipher Systems. Northwood Books, London, 1982.

185

[12] T. Berners-Lee and M. Fischetti. Weaving the Web: The Past, Present and Future

of the World Wide Web by its Inventor. Orion Business, London, 1999.

[13] J. Billington. Abstract speci�cation of the ISO Transport service de�nition using

labelled Numerical Petri nets. In Protocol Speci�cation, Testing, and Veri�cation,

III, pages 173{185. Elsevier Science Publishers, Amsterdam, 1983.

[14] J. Billington. Formal speci�cation of protocols: Protocol engineering. In Encyclo-

pedia of Microcomputers, pages 299{314. Marcel Dekker, New York, NY, 1991.

[15] J. Billington. Protocol speci�cation using P-Graphs, a technique based on Coloured

Petri nets. In Advances in Petri Nets, Advance Course in Petri Nets, pages 293{330.

Springer-Verlag, 1999.

[16] J. Billington, M. Diaz, and G. Rozenberg, editors. Application of Petri Nets to

Communication Networks: Advances in Petri Nets, volume 1605 of Lecture Notes

in Computer Science. Springer-Verlag, Berlin, 1999.

[17] J. Billington, M. Farrington, and B. Du. Modelling and analysis of multi-agent com-

munication protocols using CP-nets. In Proceedings of the 3rd Biennial Engineering

Mathematics and Applications Conference, pages 119{122, Adelaide, Australia, 13-

16 July 1998.

[18] J. Billington, M. C. Wilbur-Ham, and M. Y. Bearman. Automated protocol veri-

�cation. In Protocol Speci�cation, Testing and Veri�cation, V, pages 59{70. North

Holland, 1986.

[19] R. Braden. Extending TCP for transactions|concepts. IETF RFC 1379 URL:

ftp://ftp.isi.edu/in-notes/rfc1379.txt, Nov. 1992.

[20] R. Braden. T/TCP|TCP extensions for transactions functional speci�cation.

IETF RFC 1644 URL: ftp://ftp.isi.edu/in-notes/rfc1644.txt, July 1994.

[21] E. A. Brewer, R. H. Katz, Y. Chawathe, S. D. Gribble, T. Hodes, G. Nguyen,

M. Stemm, T. R. Henderson, E. Amir, H. Balakrishnan, A. Fox, V. N. Padmanab-

han, and S. Seshan. A network architecture for heterogeneous mobile computing.

IEEE Personal Communications, 5(5):8{24, Oct. 1998.

[22] S. Budkowski, B. Alkechi, M. L. Benalycherif, P. Dembinski, M. Gardie, E. Lallet,

J. P. M. L. Fusse, and Y. Soussi. Formal speci�cation, validation and performance

evaluation of the Xpress Transfer Protocol. In Protocol Speci�cation, Testing and

Veri�cation, XIII, Liege, Belgium, 25-28 May 1993. North-Holland.

186

[23] D. Burdett. Internet Open Trading Protocol|IOTP version 1.0. IETF RFC 2801

URL: ftp://ftp.isi.edu/in-notes/rfc2801.txt, Apr. 2000.

[24] J. Cai and D. J. Goodman. General Packet Radio Service in GSM. IEEE Commu-

nications Magazine, 35(10):122{131, Oct. 1997.

[25] A. T. Campbell, J. Gomez, S. Kim, Z. Turanyi, C.-Y. Wan, and A. Valko. Design,

implementation and evaluation of Cellular IP. IEEE Personal Communications,

7(4):42{49, Aug. 2000.

[26] A. T. Campbell and J. Gomez-Castellanos. IP micro-mobility protocols. Mobile

Computing and Communications Review, 4(4):45{53, Oct. 2000.

[27] C. G. Cassandras and S. Lafortune. Introduction to Discrete Events Systems.

Kluwer Academic Publishers, Boston Dordrecht London, 1999.

[28] C. Castelluccia, W. Dabbous, and S. O'Malley. Generating eÆcient protocol code

from an abstract speci�cation. IEEE/ACM Transactions on Networking, 5(4):514{

524, Aug. 1997.

[29] O. Catrina. Protocol analysis and veri�cation methods, application to the Xpress

Transport Protocol (XTP) 4.0. In Protocol Speci�cation, Testing and Veri�cation,

XV, pages 385{400. Chapman & Hall, London, UK, 1995.

[30] S. Christensen, L. M. Kristensen, and T. Mailund. Design/CPN Sweep-Line Method

Library. Department of Computer Science, Aarhus University, Aarhus, Denmark,

2001.

[31] S. Christensen, L. M. Kristensen, and T. Mailund. A sweep-line method for state

space exploration. In Proceedings of the Seventh International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, pages 450{464, Gen-

ova, Italy, 2-6 Apr. 2001. Volume 2031 of Lecture Notes in Computer Science,

Springer-Verlag.

[32] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite state

concurrent systems using temporal logic speci�cations: A practical approach. In

Proceedings of the 10th ACM Symposium on Principles of Programming Languages,

pages 117{127, Austin, Texas, Jan. 1983.

[33] B. Collas, S. Gordon, and H. Widjaja. IWS Design Speci�cation V1.1. University

of South Australia, Adelaide, Australia, 1997.

[34] D. E. Comer. Computer Networks and Internets. Prentice Hall, Upper Saddle

River, NJ, second edition, 1999.

187

[35] D. E. Comer. Internetworking with TCP/IP. Prentice Hall, Upper Saddle River,

NJ, fourth edition, 2000.

[36] Computer Systems Engineering Centre. University of South Australia, Web site:

http://www.unisa.edu.au/eie/csec/ [Last accessed: 23 Nov. 2001], 1 June 2001.

[37] Consultative Committee for Space Data Systems. Space Communications Protocol

Standards (SCPS): Rationale, requirements and application notes. CCSDS Rec-

ommendation 710.0-G-0.4, Aug. 1998.

[38] DataTAC Open Protocol Forum. Web site: http://www.dopforum.com/ [Last

accessed: 23 Nov. 2001], 19 Mar. 2001.

[39] J. C. A. de Figueiredo and L. M. Kristensen. Using Coloured Petri nets to in-

vestigate behavioural and performance issues of TCP protocols. In Proceedings of

the 2nd Workshop on the Practical Use of Coloured Petri Nets and Design/CPN,

pages 21{40, Aarhus, Denmark, 13{15 Oct. 1999. Department of Computer Science,

Aarhus University.

[40] M. Degermark, M. Engan, B. Nordgren, and S. Pink. Low-loss TCP/IP header

compression for wireless networks. Wireless Networks, 3(5):375{387, Oct. 1997.

[41] J. Desel and J. Esparza. Free choice Petri nets. Cambridge University Press,

Cambridge, New York, 1995.

[42] A. A. Desrochers and R. Y. Al-Jaar. Applications of Petri Nets in Manufacturing

Systems: Modeling, Control and Performance Analysis. IEEE Press, Piscataway,

NJ, 1995.

[43] D. Dougherty and A. Robbins. sed and awk. O'Reilly and Associates, Sebastopol,

CA, 2nd edition, Mar. 1997.

[44] K. Enoki. i-mode: the mobile Internet service of the 21st century. In Proceed-

ings of the IEEE International Solid-State Circuits Conference, pages 12{15, San

Francisco, CA, 5{7 Feb. 2001.

[45] ETSI. Radio Equipment and Systems (RES); Digitial Enhanced Cordless Telecom-

munications (DECT) Common Interface Part 1: Overview. ETS 300 175-1, Oct.

1992.

[46] ETSI. Radio Equipment and Systems (RES); Trans-European Trunked Radio

(TETRA); Voice plus Data (V+D) Part 1: General Network Design. ETS 300

392-1, Nov. 1994.

188

[47] M. Farrington and J. Billington. Analysing a Coloured Petri net model of an

assembly line. In Proceedings of the 3rd Biennial Engineering Mathematics and

Applications Conference, pages 193{196, Adelaide, Australia, 13-16 July 1998.

[48] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol|HTTP/1.1. IETF RFC 2616 URL: ftp://ftp.

isi.edu/in-notes/rfc2616.txt, June 1999.

[49] D. Flanagan. JavaScript: the de�nitive guide. O'Reilly & Associates, Cambridge,

Sebastopol, CA, 2nd edition, 1997.

[50] V. K. Garg. IS-95 CDMA and cdma2000: Cellular/PCS Systems Implementation.

Prentice-Hall, Upper Saddle River, NJ, 2000.

[51] S. Gordon and J. Billington. Analysing a missile simulator with Coloured Petri

nets. International Journal on Software Tools for Technology Transfer, 2(2):144{

159, Dec. 1998.

[52] S. Gordon and J. Billington. Applying Coloured Petri nets and Design/CPN to

an air-to-air missile simulator. In Proceedings of the Workshop on Practical Use of

Coloured Petri Nets and Design/CPN, pages 1{14, Aarhus, Denmark, 10-12 June

1998. Department of Computer Science, Aarhus University, PB-512.

[53] S. Gordon and J. Billington. Modelling and analysis of an air-to-air missile en-

gagement simulator using Coloured Petri nets. In Proceedings of the 3rd Biennial

Engineering Mathematics and Applications Conference, pages 225{228, Adelaide,

Australia, 13-16 July 1998.

[54] S. Gordon and J. Billington. Modelling the WAP Transaction Service using

Coloured Petri nets. In Proceedings of the First International Conference on Mobile

Data Access, pages 105{114, Hong Kong, 16-17 Dec. 1999. Volume 1748 of Lecture

Notes in Computer Science, Springer-Verlag.

[55] S. Gordon and J. Billington. WAP Forum Input Document: Inconsistencies in the

Wireless Transaction Protocol. Submitted to the WAP Forum, 19 Mar. 1999.

[56] S. Gordon and J. Billington. Analysing the WAP class 2 Wireless Transaction Pro-

tocol using Coloured Petri nets. In Proceedings of the 21st International Conference

on Application and Theory of Petri Nets, pages 207{226, Aarhus, Denmark, 26{

30 June 2000. Volume 1825 of Lecture Notes in Computer Science, Springer-Verlag.

[57] S. Gordon and J. Billington. Coloured Petri net speci�cation of the WAP Transac-

tion protocol. Technical report, Computer Systems Engineering Centre, University

of South Australia, Adelaide, Australia, Jan. 2001.

189

[58] S. Gordon, L. Kristensen, and J. Billington. An approach to generalising the state

space of a distributed missile simulator. In Proceedings of the Eleventh Annual

International Symposium of The International Council on Systems Engineering,

Melbourne, Australia, 1-5 July 2001.

[59] J. Gosling, B. Joy, and G. L. Steele. The Java Language Speci�cation. Addison

Wesley, Reading, MA, 1996.

[60] R. Gotzhein. Specifying communication services with temporal logic. In Proto-

col Speci�cation, Testing and Veri�ction, X. North-Holland, Amsterdam, Oxford,

1990.

[61] R. Gotzhein, J. Bredereke, W. E�elsberg, S. Fischer, T. Held, and H. Koenig. Im-

proving the eÆciency of automated protocol implementation using Estelle. Com-

puter Communications, 19(14):1226{1235, Dec. 1996.

[62] J. C. Gregoire. Engineering families of protocols using a formal language: Suc-

cesses and failures. In Proceedings of the IEEE International Workshop on Factory

Communication Systems, pages 61{70, Barcelona, Spain, 1-3 Oct. 1997.

[63] GSM Association. GSM World. Web site: http://www.gsmworld.com/ [Last

accessed: 23 Nov. 2001], 3 Aug. 2001.

[64] B. Han and J. Billington. An analysis of TCP connection management using

Colured Petri nets. In Proceedings of the 5th World Multi-conference on Systemat-

ics, Cybernetics and Informatics, pages 590{595, Orlando, FL, 22{25 July 2001.

[65] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session Initiation

Protocol. IETF RFC 2543 URL: ftp://ftp.isi.edu/in-notes/rfc2543.txt,

Mar. 1999.

[66] A. A. Hanish and T. S. Dillon. Communication protocol design to facilitate re-

use based on the object-oriented paradigm. Mobile Networks and Applications,

2(3):285{301, Dec. 1997.

[67] P. G. Harrison and N. M. Patel. Performance Modelling of Communication Net-

works and Computer Architecrures. Addison-Wesley, Reading, MA, 1993.

[68] P. Herrmann and H. Krumm. Compositional speci�cation and veri�cation of high-

speed transfer protocols. In Protocol Speci�cation, Testing and Veri�cation, XIV,

pages 339{346. Chapman & Hall, London, UK, 1995.

[69] C. A. Hoare. Communicating Sequential Processes. International Series in Com-

puter Science. Prentice-Hall, Englewood Cli�s, NJ, 1985.

190

[70] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,

Englewood Cli�s, NJ, 1991.

[71] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279{295, May 1997.

[72] J. E. Hopcroft and J. D. Ullman. Formal languages and their relation to automata.

Addison-Wesley, Reading, MA, 1969.

[73] P.-A. Hsiung and F. Wang. User-friendly veri�cation. In Formal Methods for

Protocol Engineering and Distributed Systems., pages 279{294. Kluwer Academic

Publishers, Boston Dordrecht London, 1999.

[74] P.-A. Hsiung, F. Wang, and R.-C. Chen. On the veri�cation of Wireless Transaction

Protocol using SGM and RED. In Proceedings of the Seventh International Con-

ference on Real-Time Computing Systems and Applications, pages 379{383, Cheju

Island, South Korea, 12{14 Dec. 2000. IEEE Computer Society.

[75] InformationWeek.Com. I-mode wireless internet could be in US by 2002. Web site:

http://www.informationweek.com/story/IWK20010314S0004 [Last accessed: 23

Nov. 2001], 14 Mar. 2001.

[76] ISO. Information Processing Systems|Open Systems Interconnection|

ESTELLE|a formal description technique based on an extended state transition

model. ISO 9074 (Withdrawn 1999-05-06), 1989.

[77] ISO. Information Processing Systems|Open Systems Interconnection|LOTOS|

a formal description technique based on the temporal ordering of observational

behaviour. ISO 8807:1989, 1989.

[78] ISO/IEC. High-level Petri nets { concepts, de�nitions and graphical notation.

ISO/IEC Final Draft International Standard 15909, May 2001.

[79] ITU. Information Technology|Open Systems Interconnection|Basic reference

model: Conventions for the de�nition of OSI services. ITU-T Recommendation

X.210, Nov. 1993. Also ISO/IEC 10731:1994.

[80] ITU. Information Technology|Open Systems Interconnection|Basic reference

model: The basic model. ITU-T Recommendation X.200, July 1994. Also ISO/IEC

7498{1:1994.

[81] ITU. Information Technology|Open Systems Interconnection|Protocol for pro-

viding the connection-mode transport service. ITU-T Recommendation X.224, Nov.

1995. Also ISO/IEC 8073:1997.

191

[82] ITU. Information Technology|Open Systems Interconnection|Transport service

de�nition. ITU-T Recommendation X.214, Nov. 1995. Also ISO/IEC 8072:1996.

[83] ITU. Information Technology|Open Systems Interconnection|Protocol for pro-

viding the connectionless-mode network service: Protocol speci�cation. ITU-T

Recommendation X.233, Aug. 1997. Also ISO/IEC 8473{1:1998.

[84] ITU. Speci�cation and Description Language (SDL). ITU-T Recommendation

Z.100, Nov. 1999.

[85] C. W. Janczura. Modelling and Analysis of Railway Network Control Logic Us-

ing Coloured Petri Nets. PhD thesis, School of Mathematics, University of South

Australia, Adelaide, Australia, Aug. 1998.

[86] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science.

Springer-Verlag, Berlin, 1997.

[87] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use. Volume 2, Analysis Methods. Monographs in Theoretical Computer Science.

Springer-Verlag, Berlin, 1997.

[88] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practi-

cal Use. Volume 3, Practical Use. Monographs in Theoretical Computer Science.

Springer-Verlag, Berlin, 1997.

[89] K. Jensen, S. Christensen, and L. M. Kristensen. Design/CPN Occurrence Graph

Manual, Version 3.0. Department of Computer Science, Aarhus University, Aarhus,

Denmark, 1996.

[90] J. B. J�rgensen and L. M. Kristensen. Design/CPN OE/OS Graph Manual, Version

1.0. Department of Computer Science, Aarhus University, Aarhus, Denmark, 1996.

[91] H. Kahlouche and J.-J. Girardot. Design of the ISO Class 0 Transport Protocol: A

stepwise re�nement based approach. In Proceedings of the IEEE International Per-

formance, Computing and Communications Conference, pages 363{370, Phoenix,

AZ, 5-7 Feb. 1997.

[92] Y. Kakuda, Y. Wakahara, and H. Saito. Component-based protocol synthesis.

Transactions of the Institute of Electronics and Communication Engineers of Japan,

Part D, J74D-I(6):369{378, June 1991.

192

[93] T. Kamada. Compact HTML for small information appliances. W3C Note http:

//www.w3c.org/TR/1998/NOTE-compactHTML-19980209 [Last accessed: 23 Nov.

2001], 9 Feb. 1998.

[94] M. M. Khan. The development of personal communication services under the aus-

pices of existing network technologies. IEEE Communications Magazine, 35(3):78{

82, Mar. 1997.

[95] P. King and T. Hyland. Handheld Device Markup Language Speci�cation.

W3C Note http://www.w3c.org/TR/NOTE-Submission-HDML-Spec.html [Last

accessed: 23 Nov. 2001], 9 May 1997.

[96] L. M. Kristensen and A. Valmari. Finding stubborn sets of coloured petri nets

without unfolding. In Proceedings of the 19th International Conference on Applica-

tion and Theory of Petri Nets, pages 104{123, Lisbon, Portugal, June 1998. Volume

1420 of Lecture Notes in Computer Science, Springer-Verlag.

[97] S. S. Lam and A. U. Shankar. A relational notation for state transition systems.

IEEE Transactions on Software Engineering, 16(7):755{775, July 1990.

[98] P. Langendoerfer and H. Koenig. COCOS|a con�gurable SDL compiler for gen-

erating eÆcient protocol implementations. In SDL'99. The Next Millenium, pages

259{274. Elsevier Science Publishers, Amsterdam, Netherlands, 1999.

[99] J.-K. Lee and K.-H. Lee. Modelling of the multicast transport protocols using Petri

nets. In Proceedings of the IEEE Singapore International Conference on Networks,

pages 106{110, Singapore, 3{7 July 1995.

[100] G. A. Lewis and C. A. Lakos. Incremental state space construction for Coloured

Petri nets. In Proceedings of the 22nd International Conference on Application and

Theory of Petri Nets, pages 263{282, Newcastle upon Tyne, UK, 25{29 June 2001.

Volume 2075 of Lecture Notes in Computer Science, Springer-Verlag.

[101] B. Lindstr�m and L. Wells. Design/CPN Performance Tool Manual, Version 1.0.

Department of Computer Science, Aarhus University, Aarhus, Denmark, Sept. 1999.

[102] R. J. Linn Jr. Conformance evaluation methodology and protocol testing. IEEE

Journal on Selected Areas on Communications, 7(7):1143{1158, Sept. 1989.

[103] M. T. Liu. Protocol engineering. In Advances in Computers, Vol. 27, pages 79{195.

Academic, New York, NY, 1989.

[104] M. T. Liu. Special issue on protocol engineering. IEEE Transactions on Computers,

40(4), Apr. 1991.

193

[105] G. M. Lundy and R. C. McArthur. Formal model of a high speed transport protocol.

In Protocol Speci�cation, Testing and Veri�cation, XII, pages 97{111, Lake Buena

Vista, FL, 22-25 June 1992. North-Holland.

[106] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceshinis. Modelling

with Generalized Stochastic Petri Nets. John Wiley & Sons, New York, 1995.

[107] H. Mehrpour and A. E. Karbowiak. Modelling and analysis of DOD TCP/IP

protocol using numerical Petri nets. In Proceedings of IEEE TENCON'90: IEEE

Region 10 Conference on Computer Communication Systems, pages 617{622, Hong

Kong,, 24-27 Sept. 1990.

[108] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publish-

ers, Boston, 1993.

[109] Meta Software Corporation. Design/CPN Reference Manual for X-Windows, Ver-

sion 2.0. Meta Software Corporation, Cambridge, MA, 1993.

[110] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, 1980.

[111] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of Standard

ML. The MIT Press, revised edition, 1997.

[112] Mobile Media Japan. i-mode Java speci�cations. Web site: http://www.

mobilemediajapan.com/newsdesk/imode-java.html [Last accessed: 23 Nov.

2001], 2001.

[113] K. H. Mortensen. Automatic code generation method based on Coloured Petri net

models applied on an access control systems. In Proceedings of the 21st Interna-

tional Conference on Application and Theory of Petri Nets, pages 367{386, Aarhus,

Denmark, 26{30 June 2000. Volume 1825 of Lecture Notes in Computer Science,

Springer-Verlag.

[114] Motorola. Flex Technologies. Web site: http://www.motorola.com/FLEX/ [Last

accessed: 23 Nov. 2001].

[115] Motorola. iDEN. Web site: http://www.motorola.com/iden/ [Last accessed: 23

Nov. 2001].

[116] M. Mouly and M.-B. Pautet. The GSM System for Mobile Communications. M.

Mouly & Marie-B Pautet, Palaiseau, France, 1992.

194

[117] A. Murase, A. Maebara, I. Okajima, and S. Hirata. Mobile radio packet data

communications in a TDMA digital cellular system. In Proceedings of the 47th

IEEE Vehicular Technology Conference, pages 1034{1038 Vol. 2, 4{7 May 1997.

[118] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541{580, Apr. 1989.

[119] M. Nakamura, Y. Kakuda, and T. Kikuno. On constructing communication pro-

tocols from component-based service speci�cations. Computer Communications,

19(14):1200{1215, Dec. 1996.

[120] S. C. Nash. Format and protocol language (FAPL). Computer Networks and ISDN

Systems, 14(1):61{77, 1987.

[121] T. Natsuno. DoCoMo's i-mode: Toward mobile multimedia in 3G. In Proceedings

of the 47th Internet Engineering Task Force Meeting, Plenary Session, Adelaide,

Australia, 26{31 Mar. 2000. IETF.

[122] B. Neelakantan and S. V. Raghavan. Protocol conformance testing|a survey. In

Computer Networks, Architecture and Applications, pages 175{191. Chapman &

Hall, London, UK, 1995.

[123] NTT DoCoMo. DoCoMoNet. Web site: http://www.nttdocomo.com/ [Last ac-

cessed: 23 Nov. 2001].

[124] G. Peersman, P. GriÆths, H. Spear, S. Cvetkovic, and C. Smythe. A tutorial

overview of the Short Message Service within GSM. Computing & Control Engi-

neering Journal, 11(2):79{89, Apr. 2000.

[125] C. E. Perkins. IP mobility support. IETF RFC 2002 URL: ftp://ftp.isi.edu/

in-notes/rfc2002.txt, Oct. 1996.

[126] C. E. Perkins. Mobile IP: Design Principles and Practices. Addison-Wesley, Read-

ing, MA, 1998.

[127] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,

Englewood Cli�s, NJ, 1981.

[128] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fur Intrumentelle

Mathematik, Schriften des IIM Nr. 2, Second Edition, Bonn, 1962.

[129] PHS MoU Group. General description of public Personal Handyphone System.

Technical Speci�cation A-GN0.00-01-TS, Apr. 1997.

195

[130] PHS MoU Group. Personal Handyphone System Memorandum of Understanding

Group. Web site: http://www.phsmou.or.jp/ [Last accessed: 23 Nov. 2001],

23 July 2001.

[131] J. Postel. User Datagram Protocol. IETF RFC 768 URL: ftp://ftp.isi.edu/

in-notes/rfc768.txt, 28 Aug. 1980.

[132] J. Postel. Internet Protocol. DARPA Internet Program Protocol Speci�cation.

Information Sciences Institute, University of Southern California, Marina del Ray,

CA, Sept. 1981. IETF RFC 791 URL: ftp://ftp.isi.edu/in-notes/rfc791.

txt.

[133] J. Postel. Transmission Control Protocol. DARPA Internet Program Protocol Spec-

i�cation. Information Sciences Institute, University of Southern California, Marina

del Ray, CA, Sept. 1981. IETF RFC 793 URL: ftp://ftp.isi.edu/in-notes/

rfc793.txt.

[134] Proceedings of the International Conferences on Application and Theory of Petri

Nets. Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1993{2000.

[135] Proceedings of the IFIP WG6.1 International Workshops/Symposiums on Protocol

Speci�cation, Testing and Veri�cation (PSTV). Vol. II (1983) to XIII (1993):

North-Holland, Amsterdam Oxford. Vol. XIV (1994) to XVII (1997): Chapman &

Hall, London, UK. Vol. XVIII (1998) to XX (2000): Kluwer Academic Publishers,

Boston Dordrecht London. Vol. XVI to XX are joint proceedings with Formal

Description Techniques (FORTE).

[136] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-

puter Science. Springer-Verlag, Berlin, 1985.

[137] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets: Advances in Petri

Nets. Volume I: Basic Models, volume 1491 of Lecture Notes in Computer Science.

Springer-Verlag, Berlin, 1998.

[138] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets: Advances in Petri

Nets. Volume II: Applications, volume 1492 of Lecture Notes in Computer Science.

Springer-Verlag, Berlin, 1998.

[139] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 26(1):96{99, Jan.

1983.

196

[140] T. G. Robertazzi. Computer Networks and Systems: Queuing Theory and Perfor-

mance Evaluation. Springer-Verlag, New York, 2nd edition, 1994.

[141] K. Saleh. Special issue on protocol engineering. Computer Communications, 19(14),

Dec. 1996.

[142] K. Saleh. Synthesis of communications protocols: An annotated bibliography. Com-

puter Communication Review, 26(5):40{59, Oct. 1996.

[143] A. K. Salkantzis and C. Chamzas. Mobile packet data technology: An insight into

MOBITEX architecture. IEEE Personal Communications Magazine, 4(1):10{18,

Jan. 1997.

[144] A. K. Salkintzis. Packet data over cellular networks: the CDPD approach. IEEE

Communications Magazine, 37(6):152{159, June 1999.

[145] A. K. Salkintzis. A survey of mobile data networks. IEEE Communications Surveys,

2(3):2{18, Third Quarter 1999.

[146] A. K. Salkintzis, C. Chamzas, and P. T. Mathiopoulos. Special issue on mobile data

networks: Advanced technologies and services. Mobile Networks and Applications,

5(1), 2000.

[147] M. J. Sanders and K. R. Parker. Modelling a low earth orbit satellite protocol with

a new object-oriented Petri net language. Technical report, Department of Digital

Systems, Monash University, Melbourne, Australia, 1997.

[148] D. Sheppard. An Introduction to Formal Speci�cation with Z and VDM. The

McGraw-Hill International Series in Software Engineering. McGraw-Hill, Boston,

MA, 1995.

[149] M. A. Smith. Formal veri�cation of communication protocols. In Formal Descrip-

tion Techniques IX: Theory, Applications, and Tools, pages 129{144. Chapman &

Hall, London, UK, Oct. 1996.

[150] M. A. Smith. Reliable message delivery and conditionally-fast transactions are not

possible without accurate clocks. In Proceedings of the 17th Annual ACM Sym-

posium on Principles of Distributed Computing, pages 163{171, Puerto Vallarto,

Mexico, June 1998.

[151] I. Sommerville. Software Engineering. Addison Wesley, Reading, MA, fourth edi-

tion, 1992.

[152] Special issue on the rise of protocol engineering. IEEE Software, 9(1), Jan. 1992.

197

[153] ST Mobile Data Pte Ltd. Web site: http://www.stmd.st.com.sg/ [Last accessed:

23 Nov. 2001].

[154] A. S. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cli�s, NJ, third

edition, 1996.

[155] TechWeb. i-mode: Coming soon to phones worldwide? Web site: http:

//content.techweb.com/wire/story/TWB20010118S0010 [Last accessed: 23 Nov.

2001], 18 Jan. 2001.

[156] Telecommunications Industry Assoication. TDMA Cellular PCS. TIA/EIA-136,

Mar. 1999.

[157] The Open Group. WAP Certi�cation. Web site: http://www.opengroup.org/

wap/cert/ [Last accessed: 23 Nov. 2001], 18 July 2001.

[158] A. A. Tokmako�. Modelling, Analysis and Prototyping of the ODP Trader Using

Coloured Petri Nets and Java. PhD thesis, School of Physics and Electronic Systems

Engineering, University of South Australia, Adelaide, Australia, Mar. 1998.

[159] J. D. Ullman. Elements of ML Programming. Prentice Hall, Englewood Cli�s, NJ,

1994.

[160] United Wireless. MOBITEX|the intelligent network. Web site: http://www.uw.

com.au/ [Last accessed: 23 Nov. 2001].

[161] University of Aarhus. Design/CPN Online. Web site: http://www.daimi.au.dk/

designCPN/ [Last accessed: 23 Nov. 2001], 17 June 2000.

[162] A. Valmari. Stubborn sets for reduced state space generation. In Proceedings of

the 9th European Workshop on Application and Theory of Petri Nets, Venice, Italy,

1990. Volume 424 of Lecture Notes in Computer Science, Springer-Verlag.

[163] A. Valmari. The state explosion problem. In Lectures on Petri Nets: Advances in

Petri Nets. Volume II: Applications, pages 429{528. Springer-Verlag, Berlin, 1998.

[164] A. Valmari and M. Tienari. Compositional failure-based semantic models for basic

LOTOS. Formal Aspects of Computing, 7(4):440{468, 1995.

[165] M. Villapol and J. Billington. Modelling and initial analysis of the Resource Reser-

vation Protocol using Coloured Petri nets. In Proceedings of Workshop on Practical

Use of High-level Petri Nets, pages 91{110, Aarhus, Denmark, 26{30 June 2000.

Department of Computer Science, Aarhus University.

198

[166] C. Vissers and L. Logrippo. The importance of the service concept in the design of

data communication protocols. In Protocol Speci�cation, Testing and Veri�cation,

V, pages 3{17. North Holland, 1986.

[167] G. von Bochmann and C. A. Sunshine. Formal methods for protocol speci�cation

and validation. In Computer Network Architectures and Protocols, pages 513{531.

Plenum Press, NY, 2nd edition, 1989.

[168] B. Wang and D. Hutchison. Protocol testing techniques. Computer Communica-

tions, 10(2):79{87, Apr. 1987.

[169] J. Wang. Timed Petri Nets, Theory and Application. Kluwer Academic Publishers,

Dordrecht, The Netherlands, 1998.

[170] WAP Forum. Wireless Application Protocol. Web site: http://www.wapforum.

org/ [Last accessed: 23 Nov. 2001].

[171] WAP Forum. WAP Architecture Speci�cation. June 2000 Conformance Release.

Available via: http://www.wapforum.org/, 30 Apr. 1998.

[172] WAP Forum. WAP Wireless Transaction Protocol Speci�cation. Version 1.0. Avail-

able via: http://www.wapforum.org/, 30 Apr. 1998.

[173] WAP Forum. WAP Push Architectural Overview. June 2000 Conformance Release.

Available via: http://www.wapforum.org/, 8 Nov. 1999.

[174] WAP Forum. WAP Wireless Transaction Protocol Speci�cation. Available via:

http://www.wapforum.org/, 11 June 1999.

[175] WAP Forum. Wireless Application Group User Agent Pro�le Speci�cation. June

2000 Conformance Release. Available via: http://www.wapforum.org/, 10 Nov.

1999.

[176] WAP Forum. WAP Conformance Process and Certi�cation Policy. WAP-216-

CertPolicy. Available via: http://www.wapforum.org/, 14 Nov. 2000.

[177] WAP Forum. WAP Speci�cation Information Note for Wireless Transaction

Protocol Speci�cation. June 2000 Conformance Release. Available via: http:

//www.wapforum.org/, 12 Dec. 2000.

[178] WAP Forum. WAP Wireless Application Environment Speci�cation Version 1.3.

June 2000 Conformance Release. Available via: http://www.wapforum.org/,

29 Mar. 2000.

199

[179] WAP Forum. WAP Wireless Datagram Protocol Speci�cation. June 2000 Confor-

mance Release. Available via: http://www.wapforum.org/, 19 Feb. 2000.

[180] WAP Forum. WAP Wireless Markup Language Speci�cation Version 1.3. June

2000 Conformance Release. Available via: http://www.wapforum.org/, 19 Feb.

2000.

[181] WAP Forum. WAP Wireless Session Protocol Speci�cation. June 2000 Confor-

mance Release. Available via: http://www.wapforum.org/, 4 May 2000.

[182] WAP Forum. WAP Wireless Telephony Application Speci�cation. June 2000 Con-

formance Release. Available via: http://www.wapforum.org/, 7 July 2000.

[183] WAP Forum. WAP Wireless Transaction Protocol Speci�cation. June 2000 Con-

formance Release. Available via: http://www.wapforum.org/, 19 Feb. 2000.

[184] WAP Forum. WAP Wireless Transport Layer Security Speci�cation. June 2000

Conformance Release. Available via: http://www.wapforum.org/, 18 Feb. 2000.

[185] WAP Forum. WAP WMLScript Language Speci�cation Version 1.2. June 2000

Conformance Release. Available via: http://www.wapforum.org/, 24 Mar. 2000.

[186] WAP Forum. WAP Architecture Speci�cation. Version 2.0. Available via: http:

//www.wapforum.org/, 12 July 2001.

[187] WAP Forum. WAP Wireless Transaction Protocol Speci�cation. Version 2.0. Avail-

able via: http://www.wapforum.org/, 10 July 2001.

[188] G. R. Wheeler. Numerical Petri Nets: A de�nition. Technical report, Telecom

Australia, Research Laboratory Report 7780, May 1985.

[189] World Wide Web Consortium. HTML 4.0 speci�cation. W3C Recommendation.

Available via: http://www.w3.org/ [Last accessed: 23 Nov. 2001], 18 Dec. 1997.

[190] World Wide Web Consortium. XHTML 1.0: The Extensible HyperText Markup

Language. W3C Recommendation: http://www.w3c.org/tr/xhtml1/ [Last ac-

cessed: 23 Nov. 2001], 26 Jan. 2000.

[191] XTP Forum. Xpress Transport Protocol Speci�cation. XTP Revision 4.0, XTP

Forum, Santa Barbara, CA, Mar. 1995.

200

Appendix A

Finite State Automata

Verifying the Transaction Protocol involves checking if it contains the same set of global

primitive sequences as the Transaction Service. Chapter 4 described the relationship be-

tween CPNs (and their state space) and languages. This appendix describes the practical

steps of obtaining the FSA from the CPN models (Section A.1), minimizing the FSA and

comparing two FSAs (Section A.2).

A.1 Finite State Automata and State Spaces

A state space is a directed graph with nodes representing the state of the system, and

arcs representing the changes in state. For Coloured Petri nets, the nodes also correspond

to markings of the net and the arcs correspond to binding elements. A state space can be

treated as a deterministic FSA, where the set of binding elements is the input alphabet.

The purpose of doing so is to take advantage of well-known techniques [72] for comparing

FSAs (or languages). These techniques will become apparent in Section A.2.

In general, it is not necessary for a one-to-one mapping of binding elements to symbols

of the alphabet. For example, the TR-Protocol maps binding elements that correspond

to service primitives to symbols representing those primitives (allowing many binding

elements to map to one symbol), and maps all other (non-primitive) binding elements to

the empty string, �. As a result, the FSA is non-deterministic.

Design/CPN [109] is used for creating the state spaces, whereas FSM [4] is used for the

FSA and language analysis. Therefore, Standard ML functions are used in Design/CPN

to write the state space to a text �le in a format suitable for use by FSM. This process

includes the mapping of binding elements to symbols. The format used by FSM is of the

form:

src_node_1 dest_node_1 transition_1

src_node_2 dest_node_2 transition_2

201

...

src_node_n dest_node_n transition_n

halt_node_1

...

halt_node_m

where src node 1 is the initial or starting node in the FSA, and nodes and transitions

are given as integers. A transition value of 0 represents an empty string or transition

(�-transition).

Listing A.1 gives the two functions used for writing the Design/CPN state space to

text �les. og2fsmtrans() writes binding elements, line by line, to a text �le. This function

can be applied to any state space. A function given as an argument performs the mapping

from arcs in a speci�c state space to symbols or transitions in the FSA. For example,

Listing 6.2 gives the mapping speci�cation for the TR-Service and Listing D.4 gives the

mapping speci�cation for the TR-Protocol. The output �le name is also given as an

argument.

Listing A.1: Standard ML code to convert a Design/CPN state space to FSM text format

1 (� write OG to text �le in format : srcnodeno destnodeno primitiveno �)
2 (� (Arc �> string) �> string �> unit �)
3 fun og2fsmtrans arc2fsm �lename =

4 let

5 val out�le = open out(�lename)

6 fun getfsminput (a) = output(out�le ,makestring(SourceNode(a))^" "^

7 makestring(DestNode(a))^" "^arc2fsm(a) ^ "nn")
8 in

9 EvalAllArcs(getfsminput);

10 close out (out�le)

11 end;

12

13 (� calculate halt states for FSM and write to text �le , one per line �)
14 (� (Node �> bool) �> string �> unit �)
15 fun og2fsmhalts �ndhalts �lename =

16 let

17 val out�le = open out(�lename)

18 fun WriteNodes(n)=output(out�le,st Node(n) ^ "nn")
19 in

20 SearchAllNodes(�ndhalts ,fn n => WriteNodes(n),[],op ::);

21 close out (out�le)

22 end;

The second function in Listing A.1, og2fsmhalts(), writes all halt nodes, one per line,

to a text �le. Again, a predicate for a speci�c state space is used to determine which

nodes are halt states. For example, FindHalts() in Listing 6.2 returns true when a node

in the TR-Service state space is classi�ed as a halt state.

202

Listing A.2 shows a script used in minimising the TR-Protocol FSA and comparing

it to the TR-Service FSA. Many details of this script are not discussed|it is included to

assist other Design/CPN and FSM users.

The text �les containing the transitions and halts of the FSA can be concatenated

(Line 25 of Listing A.2), and used as an input to FSM. The text �le is compiled by FSM

into a binary format (Line 41).

Listing A.2: Shell script to minimize a Revised TR-Protocol con�guration using FSM

1 #!/bin/sh

2 if test $3

3 then echo 'Processing OG Results ...';

4 else echo 'Usage: minog trans�le halts �le onj o� '; exit ;

5 �

6

7 trans=$1

8 halts=$2

9 userack=$3

10

11 # Setup the directories

12 thesisdir =/home/sgordon/thesis/

13 servicedir =$thesisdir 'cpn/service /'

14 protocoldir =$thesisdir 'cpn/wtp/protocol/'

15 labels =$thesisdir 'cpn/service/symbols.txt '

16 case $userack in

17 on) servicefsm=$servicedir 'uack/ogmin.fsm' ;;

18 o�) servicefsm=$servicedir 'nouack/ogmin.fsm' ;;

19 esac

20

21 # Setup OG from Design/CPN output for FSM input

22 # trans �le doenst exist , then try and use its gzipped counterpart

23 if test �e $trans

24 then

25 cat $trans $halts > og.txt

26 else

27 tmpgzip=`basename $trans .txt`

28 if test �e $tmpgzip'.txt .gz'

29 then

30 gunzip $tmpgzip'. txt .gz'

31 cat $trans $halts > og.txt

32 else

33 echo 'Error : ' $trans ' does not exist .';

34 exit ;

35 �

36 �

37 gzip $trans

38 echo ' Minimizing ...'

39

40 echo ' Compiling ...'

41 fsmcompile og.txt > og.fsm

42 if test �f og.fsm

203

43 then rm og.txt;

44 else echo 'Error : fsm compilation failed .'; exit ;

45 �

46

47 echo ' Removing empties ...'

48 fsmrmepsilon og.fsm > ognoeps.fsm

49 if test �f ognoeps.fsm

50 then rm og.fsm;

51 else echo 'Error : removal of epsilons failed .'; exit ;

52 �

53

54 echo ' Determinizing ...'

55 fsmdeterminize ognoeps.fsm > ogdeterm.fsm

56 if test �f ogdeterm.fsm

57 then rm ognoeps.fsm;

58 else echo 'Error : fsm determinization failed .'; exit ;

59 �

60

61 echo ' Minimizing ...'

62 fsmminimize ogdeterm.fsm > ogmin.fsm

63 if test �f ogmin.fsm

64 then rm ogdeterm.fsm;

65 else echo 'Error : fsm minimization failed .'; exit ;

66 �

67

68 fsminfo �n ogmin.fsm > info.txt

69

70 echo ' Processing language ...'

71 # Obtain language (if possible)

72 lexfsmstrings �l $labels ogmin.fsm > lang.txt

73

74 # Graphical form

75 fsmdraw �i $labels ogmin.fsm > ogdraw.txt

76 dot �Tps �o ogdraw.ps ogdraw.txt

77

78 # Comparisons

79 fsmdi�erence ogmin.fsm $servicefsm > di��service .fsm

80 fsmdi�erence $servicefsm ogmin.fsm > di��protocol.fsm
81 lexfsmstrings �l $labels di��service .fsm > di�ang�service . txt

82 lexfsmstrings �l $labels di��protocol.fsm > di�ang�protocol.txt
83

84 echo 'Complete.'

A.2 FSA Minimization and Comparison

The purpose of treating the state space as a FSA (e.g. the TR-Protocol FSA) is that

it can be compared to another FSA (e.g. TR-Service FSA) and determined if the two

contain the same language (e.g. the sequences of primitives de�ned by the TR-Service

are preserved by the TR-Protocol). This is based on the fact that any non-deterministic

204

FSA with �-transitions can be converted into a canonical form, a minimized deterministic

FSA [9]. If the canonical forms of two FSAs are isomorphic, then they have identical

languages. The steps for minimizing a FSA are [9]:

1. Remove all �-transitions from the FSA using the rule: a transition from node 1 to

node 2 on input a, followed by an �-transition from node 2 to node 3, is equivalent

to a transition from node 1 to node 3 on input a. The command fsmrmepsilon is

used in FSM to perform this step (Line 48 of Listing A.2).

2. Convert the non-deterministic FSA into a deterministic FSA. This can be achieved

by: identifying nodes that are the destination of a single source node on the input

of one symbol; creating a new node based on these destination nodes; and then

removing the old destination nodes. Eventually, the non-determinism will be re-

moved. Any inaccessible states as a result of this process can also be removed.

fsmdeterminize performs these functions in FSM (Line 55 of Listing A.2).

3. Minimize the deterministic FSA to its canonical form by identifying and merging

equivalent states. For example, this can be done by �nding states that will be in-

distinguishable if they were merged, and then merge them, deleting the component

states. The command fsmminimize performs the minimization in FSM (Line 62 of

Listing A.2).

Once two FSA have been minimized they can be either directly compared (for ex-

ample, fsmdifference, Line 79 of Listing A.2, returns an FSA of the di�erences), or

their languages compared. The complete language of a FSA produced in FSM can be

written to a text �le using lexfsmstrings (Line 72 of Listing A.2), which is part of Lex-

Tools [6]. LexTools and GraphViz [5] include a set of commands for manipulating FSAs

into languages and graphical representations (e.g. PostScript). The reader is referred

to the corresponding web sites of FSM [4], LexTools [6] and GraphViz [5] for further

information.

205

Appendix B

Transaction Protocol State Tables

The operation of the Transaction Protocol (TR-Protocol) is described mainly using state

tables. These are given in Section 10.5 (WTP Initiator) and Section 10.6 (WTP Re-

sponder) of the WTP Speci�cation [183]. In Chapter 5 we summarize the structure of

the state tables. This appendix gives the state tables in full. Although only Transaction

Class 2 is modelled and analysed in this thesis, the state table entries for all classes (0, 1,

and 2) are shown. The only changes made are the correcting of typographical errors. We

have added numbers to the left of each Class 2 entry so they can be referred to easily.

Event Condition Action Next State

1 TR-Invoke.req Class == 2 j 1 SendTID = GenTID RESULT WAIT
Send Invoke PDU
Reset RCR
Start timer, R[RCR]
Uack = False

2 Class == 2 j 1 SendTID = GenTID
UserAck Send Invoke PDU

Reset RCR
Start timer, R[RCR]
Uack = True

Class == 0 SendTID = GenTID NULL
Send Invoke PDU

Table B.1: TR-Protocol state table: TR-Init-PE NULL

206

Event Condition Action Next State

1 TR-Abort.req Abort transaction NULL
Send Abort PDU (USER)

2 RcvAck Class == 2 Stop timer RESULT WAIT
Generate TR-Invoke.cnf
HoldOn = True

Class == 1 Stop timer NULL
Generate TR-Invoke.cnf

3 TIDve SendAck(TIDok) RESULT WAIT
Class == 2 j 1 Increment RCR

Start timer, R[RCR]
4 RcvAbort Abort transaction NULL

Generate TR-Abort.ind
5 RcvErrorPDU Abort transaction NULL

Send Abort PDU (PROTOERR)
Generate TR-Abort.ind

6 TimerTO R RCR< Increment RCR RESULT WAIT
MAX RCR Start timer, R[RCR]

Send Invoke PDU
7 RCR< Increment RCR RESULT WAIT

MAX RCR, Start timer, R[RCR]
Ack(TIDok) Send Ack(TIDok)
already sent

8 RCR == Abort transaction NULL
MAX RCR Generate TR-Abort.ind

9 RcvResult Class == 2 Stop timer RESULT RESP
HoldOn == True Generate TR-Result.ind WAIT

Start timer, A
10 Class == 2 Stop timer

HoldOn == False Generate TR-Invoke.cnf
Generate TR-Result.ind
Start timer, A

Table B.2: TR-Protocol state table: TR-Init-PE RESULT WAIT

Event Condition Action Next State

1 TR-Result.res Queue(A) Ack PDU WAIT TIMEOUT
Start timer, W

2 ExitInfo Queue(A) Ack PDU with Info TPI
Start timer, W

3 RcvAbort Abort transaction NULL
Generate TR-Abort.ind

4 TR-Abort.req Abort transaction
Send Abort PDU (USER)

5 RcvErrorPDU Abort transaction NULL
Send Abort PDU (PROTOERR)
Generate TR-Abort.ind

6 RcvResult Ignore RESULT RESP
WAIT

7 TimerTO A AEC< Increment AEC RESULT RESP
AEC MAX Start timer, A WAIT

8 AEC == Abort transaction NULL
AEC MAX Send Abort PDU (NORESPONSE)

9 Uack == False Queue(A) Ack PDU WAIT TIMEOUT
Start timer, W

Table B.3: TR-Protocol state table: TR-Init-PE RESULT RESP WAIT

207

Event Condition Action Next State

1 RcvResult RID=0 Ignore WAIT TIMEOUT
2 RcvResult RID=1 Send Ack PDU WAIT TIMEOUT
3 RcvResult RID=1,ExitInfo Send Ack PDU with info TPI WAIT TIMEOUT
4 RcvAbort Abort transaction NULL

Generate TR-Abort.ind
5 RcvErrorPDU Abort transaction NULL

Send Abort PDU (PROTOERR)
Generate TR-Abort.ind

6 TimerTO W Clear transaction NULL
7 TR-Abort.req Abort transaction NULL

Send Abort PDU (USER)

Table B.4: TR-Protocol state table: TR-Init-PE WAIT TIMEOUT

Event Condition Action Next State

1 RcvInvoke Class == 2 j 1 Generate TR-Invoke.ind INVOKE RESP
Valid TID Start timer, A WAIT
U/P ag Uack = True

2 Class = 2 j 1 Generate TR-Invoke.ind
Valid TID Start timer, A

Uack = False
Class == 0 Generate TR-Invoke.ind LISTEN

3 Class == 2 j 1 Send Ack(TIDve) TIDOK WAIT
Invalid TID

4 RcvErrorPDU Send Abort PDU (PROTOERR) LISTEN

Table B.5: TR-Protocol state table: TR-Resp-PE LISTEN

Event Condition Action Next State

1 RcvAck Class == 2 j 1 Generate TR-Invoke.ind INVOKE RESP
TIDok Start timer, A WAIT

2 RcvErrorPDU Send Abort PDU (PROTOERR) LISTEN
Abort transaction

3 RcvAbort Abort transaction LISTEN
4 RcvInvoke RID=0 Ignore TIDOK WAIT
5 RID=1 Send Ack(TIDve) TIDOK WAIT

Table B.6: TR-Protocol state table: TR-Resp-PE TIDOK WAIT

208

Event Condition Action Next State

TR-Invoke.res Class == 1 Queue(A) Ack PDU with InfoTPI WAIT TIMEOUT
ExitInfo Start timer, W
Class == 1 Queue(A) Ack PDU

Start timer, W
1 Class == 2 Start timer, A RESULT WAIT
2 TR-Result.req Reset RCR RESULT RESP

Start timer, R[RCR] WAIT
Send Result PDU

3 TR-Abort.req Abort transaction LISTEN
Send Abort PDU (USER)

4 RcvAbort Generate TR-Abort.ind LISTEN
Abort transaction

5 RcvInvoke Ignore INVOKE RESP
WAIT

6 RcvErrorPDU Abort transaction LISTEN
Send Abort PDU (PROTOERR)
Generate TR-Abort.ind

7 TimerTO A AEC< Increment AEC INVOKE RESP
AEC MAX Start timer, A WAIT

8 AEC == Abort transaction LISTEN
AEC MAX Send Abort PDU (NORESPONSE)
Class == 1 Queue(A) Ack PDU WAIT TIMEOUT
Uack == False Start timer, W

9 Class == 2 Send Ack PDU RESULT WAIT
Uack == False

Table B.7: TR-Protocol state table: TR-Resp-PE INVOKE RESP WAIT

Event Condition Action Next State

1 TR-Result.req Reset RCR RESULT RESP
Start timer, R[RCR] WAIT
Send Result PDU

2 RcvInvoke RID=0 Ignore RESULT WAIT
3 RID=1 Ignore RESULT WAIT
4 RID=1, Ack PDU Resend Ack PDU RESULT WAIT

already sent
5 RcvErrorPDU Abort transaction LISTEN

Send Abort PDU (PROTOERR)
Generate TR-Abort.ind

6 TR-Abort.req Abort transaction LISTEN
Send Abort PDU (USER)

7 RcvAbort Generate TR-Abort.ind LISTEN
Abort transaction

8 TimerTO A Send Ack PDU RESULT WAIT

Table B.8: TR-Protocol state table: TR-Resp-PE RESULT WAIT

209

Event Condition Action Next State

1 TR-Abort.req Abort transaction LISTEN
Send Abort PDU (USER)

2 RcvAbort Generate TR-Abort.ind LISTEN
Abort transaction

3 RcvAck Generate TR-Result.cnf LISTEN
4 RcvErrorPDU Abort transaction LISTEN

Send Abort PDU (PROTOERR)
Generate TR-Abort.ind

5 TimerTO R RCR< Increment RCR RESULT RESP
RCR MAX Send Result PDU WAIT

Start timer, R[RCR]
6 RCR == Generate TR-Abort.ind LISTEN

RCR MAX Abort transaction

Table B.9: TR-Protocol state table: TR-Resp-PE RESULT RESP WAIT

Event Condition Action Next State

RcvInvoke RID=0 Ignore WAIT TIMEOUT
RcvInvoke RID=1 Send Ack PDU WAIT TIMEOUT
RcvInvoke RID=1, ExitInfo Send Ack PDU with Info TPI WAIT TIMEOUT
RcvErrorPDU Abort transaction LISTEN

Send Abort PDU (PROTOERR)
Generate TR-Abort.ind

RcvAbort Abort transaction LISTEN
Generate TR-Abort.ind

TimerTO W Clear transaction LISTEN
TR-Abort.req Abort transaction LISTEN

Send Abort PDU (USER)

Table B.10: TR-Protocol state table: TR-Resp-PE WAIT TIMEOUT (Class 1 Only)

210

Appendix C

Transaction Service State Space

Reports

Chapter 6 describes the TR-Service CPN and discusses the analysis results. The anal-

ysis includes generation of the TR-Service state space when UserAck is On and O�.

Design/CPN produces a report on the state space analysis, summarizing the statistics

and properties. The reports for both TR-Service state spaces are given in Listings C.1

(UserAck On) and C.2 (UserAck O�).

Listing C.1: Report on the TR-Service state space produced by Design/CPN when User-

Ack is On

1 Statistics

2 ��������������������������������
3 Occurrence Graph

4 Nodes: 57

5 Arcs : 114

6 Secs : 0

7 Status : Full

8

9 Scc Graph

10 Nodes: 57

11 Arcs : 114

12 Secs : 0

13

14 Boundedness Properties

15 ��������������������������������
16 Best Integers Bounds Upper Lower

17 InvokeResult 'AckType 1 1 0

18 InvokeResult ' InitToResp 1 2 0

19 InvokeResult ' Initiator 1 1 1

20 InvokeResult 'RespToInit 1 3 0

21 InvokeResult 'Responder 1 1 1

22

23 Best Upper Multi�set Bounds

24 InvokeResult 'AckType 1

25 1`On

211

26 InvokeResult ' InitToResp 1

27 1`Invoke++ 1`Ack++ 1`Abort

28 InvokeResult ' Initiator 1

29 1`Uinvoke++ 1`Pinvokeack++ 1`Presult++ 1`Uresultack++ 1`Icomplete

30 InvokeResult 'RespToInit 1

31 1`Result++ 1`Ack++ 1`NoAck++ 1`Abort

32 InvokeResult 'Responder 1

33 1`Pinvoke++ 1`Uinvokeack++ 1`Uresult++ 1`Presultack++ 1`Rcomplete

34

35 Best Lower Multi�set Bounds

36 InvokeResult 'AckType 1 empty

37 InvokeResult ' InitToResp 1 empty

38 InvokeResult ' Initiator 1 empty

39 InvokeResult 'RespToInit 1 empty

40 InvokeResult 'Responder 1 empty

41

42 Home Properties

43 ��������������������������������
44 Home Markings: None

45

46 Liveness Properties

47 ��������������������������������
48 Dead Markings: 22 [57,56,55,54,53,...]

49 Dead Transitions Instances : None

50 Live Transitions Instances : None

51

52 Fairness Properties

53 ��������������������������������
54 No in�nite occurrence sequences.

Listing C.2: Report on the TR-Service state space produced by Design/CPN when User-

Ack is O�

1 Statistics

2 ��������������������������������
3 Occurrence Graph

4 Nodes: 60

5 Arcs : 129

6 Secs : 0

7 Status : Full

8

9 Scc Graph

10 Nodes: 60

11 Arcs : 129

12 Secs : 0

13

14 Boundedness Properties

15 ��������������������������������
16 Best Integers Bounds Upper Lower

17 InvokeResult 'AckType 1 1 0

18 InvokeResult ' InitToResp 1 2 0

19 InvokeResult ' Initiator 1 1 1

20 InvokeResult 'RespToInit 1 3 0

212

21 InvokeResult 'Responder 1 1 1

22

23 Best Upper Multi�set Bounds

24 InvokeResult 'AckType 1

25 1`O�

26 InvokeResult ' InitToResp 1

27 1`Invoke++ 1`Ack++ 1`Abort

28 InvokeResult ' Initiator 1

29 1`Uinvoke++ 1`Pinvokeack++ 1`Presult++ 1`Uresultack++ 1`Icomplete

30 InvokeResult 'RespToInit 1

31 1`Result++ 1`Ack++ 1`NoAck++ 1`Abort

32 InvokeResult 'Responder 1

33 1`Pinvoke++ 1`Uinvokeack++ 1`Uresult++ 1`Presultack++ 1`Rcomplete

34

35 Best Lower Multi�set Bounds

36 InvokeResult 'AckType 1 empty

37 InvokeResult ' InitToResp 1 empty

38 InvokeResult ' Initiator 1 empty

39 InvokeResult 'RespToInit 1 empty

40 InvokeResult 'Responder 1 empty

41

42 Home Properties

43 ��������������������������������
44 Home Markings: None

45

46 Liveness Properties

47 ��������������������������������
48 Dead Markings: 22 [60,59,58,57,54,...]

49 Dead Transitions Instances : None

50 Live Transitions Instances : None

51

52 Fairness Properties

53 ��������������������������������
54 No in�nite occurrence sequences.

213

Appendix D

Transaction Protocol CPN and

Results

Chapter 7 gives a detailed description of the TR-Protocol CPN. Analysis of the CPN

model is presented in Chapter 8. This appendix contains supporting material for the

model and analysis results. For completeness, all declarations for the TR-Protocol CPN

are given in Section D.1. Section D.2 presents the state space analysis results recorded in

Design/CPN [109]. Section D.3 lists the code for obtaining the FSA from Design/CPN,

and gives several of the language analysis results.

D.1 TR-Protocol CPN Declarations

The complete set of declarations for the TR-Protocol CPN are given in Listing D.1.

Listing D.1: Declarations for the TR-Protocol CPN

1 (� Design/CPN Options �)
2 NewOGGeneration := true;

3

4 (� Base Types & Variables �)
5 color Flag = bool with (F,T);

6 color RCR c = int;

7 var u, TorF:Flag;

8

9 (� Maximum Counter Values �)
10 val RCRImax = 3;

11 val RCRRmax = 1;

12

13 (� PDUs �)
14 color InvokePDU c = record

15 RID:Flag � (� Retransmission Indicator �)
16 UP:Flag; (� User or PE acknowledgment �)
17 color ResultPDU c = Flag; (� RID �)
18 color AckPDU c = record

19 RID:Flag � (� Retransmission Indicator �)

214

20 TveTok:Flag; (� TID Veri�cation /TID Ok �)
21 color AbortPDU c = with abort; (� No �elds �)
22 color PDU = union InvokePDU:InvokePDU c +

23 ResultPDU:ResultPDU c +

24 AckPDU:AckPDU c +

25 AbortPDU:AbortPDU c;

26 var invoke :InvokePDU c;

27 var result :ResultPDU c;

28 var ack:AckPDU c;

29

30 (� Initiator & Responder State Names �)
31 color IStateName = with

32 I NULL j
33 I RESULT WAIT j
34 I RESULT RESP WAIT j
35 I WAIT TIMEOUT ;

36

37 color RStateName = with

38 R LISTEN j
39 R TIDOK WAIT j
40 R INVOKE RESP WAIT j
41 R RESULT WAIT j
42 R RESULT RESP WAIT ;

43

44 (� Transaction Data � Initiator �)
45 color ITransData = record

46 Uack:Flag � (� True if UserAck On �)
47 RCR:RCR c � (� Retransmission Counter �)
48 AckSent:Flag� (� True if Ack(TIDok) PDU sent �)
49 HoldOn:Flag � (� True if Ack has been received �)
50 Timer:Flag ; (� True if Timer on �)
51

52 (� Transaction Data � Responder �)
53 color RTransData = record

54 Uack:Flag � (� True if UserAck On �)
55 RCR:RCR c � (� Retransmission Counter �)
56 AckSent:Flag� (� True if Ack PDU sent �)
57 Timer:Flag ; (� True if Timer on �)
58

59 color InitState = product IStateName � ITransData;

60 color RespState = product RStateName � RTransData;

61

62 var isn :IStateName;

63 var rsn :RStateName;

64 var it : ITransData;

65 var rt :RTransData;

66

67 (� Functions for modifying Initiator Transaction data �)
68 fun AssignUackI (t :ITransData, u:Flag): ITransData=

69 fUack=u,
70 RCR=#RCR(t),

71 AckSent=#AckSent(t),

215

72 HoldOn=#HoldOn(t),

73 Timer=#Timer(t)g;
74 fun SetAckSentI (t :ITransData):ITransData=

75 fUack=#Uack(t),

76 RCR=#RCR(t),

77 AckSent=T,

78 HoldOn=#HoldOn(t),

79 Timer=#Timer(t)g;
80 fun IncRCRI (t:ITransData):ITransData=

81 fUack=#Uack(t),

82 RCR=#RCR(t)+1,

83 AckSent=#AckSent(t),

84 HoldOn=#HoldOn(t),

85 Timer=#Timer(t)g;
86 fun StartTimerI (t :ITransData):ITransData=

87 fUack=#Uack(t),

88 RCR=#RCR(t),

89 AckSent=#AckSent(t),

90 HoldOn=#HoldOn(t),

91 Timer=Tg;
92 fun StopTimerI (t :ITransData):ITransData=

93 fUack=#Uack(t),

94 RCR=#RCR(t),

95 AckSent=#AckSent(t),

96 HoldOn=#HoldOn(t),

97 Timer=Fg;
98 fun SetHoldOnI (t:ITransData):ITransData=

99 fUack=#Uack(t),

100 RCR=#RCR(t),

101 AckSent=#AckSent(t),

102 HoldOn=T,

103 Timer=#Timer(t)g;
104 fun ClearInitI (t :ITransData):ITransData=

105 fUack=F,
106 RCR=0,

107 AckSent=F,

108 HoldOn=F,

109 Timer=Fg;
110

111 (� Functions for modifying Responder Transaction data �)
112 fun AssignUackR (t:RTransData, u:Flag):RTransData=

113 fUack=u,
114 RCR=#RCR(t),

115 AckSent=#AckSent(t),

116 Timer=#Timer(t)g;
117 fun SetAckSentR (t:RTransData):RTransData=

118 fUack=#Uack(t),

119 RCR=#RCR(t),

120 AckSent=T,

121 Timer=#Timer(t)g;
122 fun IncRCRR (t:RTransData):RTransData=

123 fUack=#Uack(t),

216

124 RCR=#RCR(t)+1,

125 AckSent=#AckSent(t),

126 Timer=#Timer(t)g;
127 fun ResetRCRR (t:RTransData):RTransData=

128 fUack=#Uack(t),

129 RCR=0,

130 AckSent=#AckSent(t),

131 Timer=#Timer(t)g;
132 fun StartTimerR (t:RTransData):RTransData=

133 fUack=#Uack(t),

134 RCR=#RCR(t),

135 AckSent=#AckSent(t),

136 Timer=Tg;
137 fun StopTimerR (t:RTransData):RTransData=

138 fUack=#Uack(t),

139 RCR=#RCR(t),

140 AckSent=#AckSent(t),

141 Timer=Fg;
142 fun ClearRespR (t:RTransData):RTransData=

143 fUack=F,
144 RCR=0,

145 AckSent=F,

146 Timer=Fg;

D.2 TR-Protocol State Space Results

The state space analysis of the TR-Protocol discussed in Chapter 8 was performed using

Design/CPN [109]. Design/CPN produces a report summarizing important statistics and

properties of the state space. This report for Con�guration 1 of the TR-Protocol is given

in Listing D.2.

Listing D.2: State space report generated by Design/CPN for Con�guration 1 of the

TR-Protocol CPN

1 Statistics

2 ��������������������������������
3 Occurrence Graph

4 Nodes: 40386

5 Arcs : 182395

6 Secs : 377

7 Status : Full

8

9 Scc Graph

10 Nodes: 40386

11 Arcs : 182395

12 Secs : 58

13

14 Boundedness Properties

15 ��������������������������������
16 Best Integers Bounds Upper Lower

217

17 I NULL'UserAck 1 1 0

18 I RW RcvResult Cnf'TempState 1 1 0

19 R LISTEN'First 1 1 1

20 TR Init PE' Initiator 1 1 0

21 TR Protocol'InitToResp 1 5 0

22 TR Protocol'RespToInit 1 9 0

23 TR Resp PE'Responder 1 1 1

24

25 Liveness Properties

26 ��������������������������������
27 Dead Markings: 1884 [979,9780,978,9779,9617,...]

28 Dead Transitions Instances :

29

30 I RESULT RESP WAIT'TimerTO A Max 1

31 R INVOKE RESP WAIT'TimerTO A Max 1

A desired property of the TR-Protocol is successful termination (Property 8.2). To

prove this property, a query is applied on all dead markings in the state space to determine

if they are desirable. Listing D.3 gives the query and Figure D.1 shows the results of

this query. The predicate IsValidTerminal() takes a node as input and returns true if it is

of the form of the desirable markings speci�ed in Tables 8.1 and 8.2. This predicate is

applied to all nodes in the list of dead markings, and if any elements are false (i.e. a dead

marking is unexpected), then invalidterminal will evaluate to true. Figure D.1 shows all

dead markings are desirable (i.e. invalidterminal is false).

Listing D.3: Standard ML code for checking validity of dead markings in the TR-Protocol

1 fun IsValidTerminal (n)=

2 ((Mark.I NULL'UserAck 1 n) == empty)

3 andalso

4 ((Mark.I RW RcvResult Cnf'TempState 1 n) == empty)

5 andalso

6 ((Mark.I NULL' Initiator 1 n) == (1,(I NULL,fRCR=0,Uack=F,
7 AckSent=F,HoldOn=F,Timer=Fg))!!empty)

8 andalso

9 ((((Mark.R LISTEN'First 1 n) == (1,T)!!empty) andalso

10 ((Mark.R LISTEN'Responder 1 n) == (1,(R LISTEN,fRCR=0,Uack=F,
11 AckSent=F,Timer=Fg))!!empty) andalso

12 ((Mark.I NULL'InitToResp 1 n) == empty) andalso

13 ((Mark.R LISTEN'RespToInit 1 n) == empty))

14 orelse

15 (((Mark.R LISTEN'First 1 n) == (1,F)!!empty) andalso

16 ((Mark.R LISTEN'Responder 1 n) == (1,(R LISTEN,fRCR=0,Uack=F,
17 AckSent=F,Timer=Fg))!!empty)));

218

use "check-dead-markings.sml"; [opening check-dead-markings.sml]
val IsValidTerminal = fn : Node -> bool
val it = () : unit

val dm = ListDeadMarkings();
val validterminal_list = map IsValidTerminal dm;

val dm = [979,9780,978,9779,9617,9616,959,955,9513
9512,9507,9506,...]
 : Node list
val validterminal_list =
 [true,true,true,true,true,true,true,true,true,
true,true,true,...] : bool list

val invalidterminal = mem validterminal_list false val invalidterminal = false : bool

Check Dead Markings are Valid

Figure D.1: Standard ML code that matches all desired dead markings in the state space

of Con�guration 1 of the TR-Protocol

D.3 TR-Protocol Language Results

D.3.1 Binding Element Map Speci�cation

Language analysis involves calculating the TR-Protocol language and comparing it with

the TR-Service language. The TR-Protocol language is obtained from the TR-Protocol

state space using the process introduced in Chapter 4 and described in detail in Ap-

pendix A. Listing D.4 shows the function used for mapping the binding elements in

the TR-Protocol CPN to integers representing service primitives (as de�ned in Ta-

ble 6.5). Nearly all of the mappings can be obtained directly from the names and la-

bels of the transitions in the TR-Protocol CPN. The exceptions are the ProviderAbort

transitions on the pages I ABORT (Figure 7.17) and R ABORT (Figure 7.18). The la-

bels on these transitions indicate that the delivery of the TR-Abort.ind primitive to

the TR-User is conditional. For transition ProviderAbort on the I ABORT page, a TR-

Abort.ind primitive is not delivered to the TR-Init-User if the abort occurs while the

TR-Init-PE is in the I WAIT TIMEOUT state (isn=I WAIT TIMEOUT). For transition

ProviderAbort on the R ABORT page, a TR-Abort.ind primitive is not delivered to the

TR-Resp-User if the abort occurs while the TR-Resp-PE is in the R TIDOK WAIT state

(rsn=R TIDOK WAIT).

Listing D.4: Standard ML code for mapping state space arcs to primitive numbers for

the TR-Protocol CPN

1 fun be2str (Bind.I NULL'Invoke req (1,)) = "1"

2 j be2str (Bind.I NULL'RcvAck Tve (1,)) = "0"

3 j be2str (Bind.I RESULT WAIT'Abort req (1,)) = "9"

4 j be2str (Bind.I RESULT WAIT'TimerTO R Max (1,)) = "11"

5 j be2str (Bind.I RESULT WAIT'TimerTO R (1,)) = "0"

6 j be2str (Bind.I RESULT WAIT'TimerTO R Tve (1,)) = "0"

7 j be2str (Bind.I RESULT WAIT'RcvAck Tve (1,)) = "0"

8 j be2str (Bind.I RESULT WAIT'RcvAck Cnf (1,)) = "4"

9 j be2str (Bind.I RESULT WAIT'RcvResult (1,)) = "6"

10 j be2str (Bind.I RESULT WAIT'RcvAbort (1,)) = "11"

219

11 j be2str (Bind.I RESULT WAIT'UserAbort (1,)) = "9"

12 j be2str (Bind.I RESULT WAIT'ProviderAbort (1,)) = "11"

13 j be2str (Bind.I RW RcvResult Cnf'Invoke cnf (1,)) = "4"

14 j be2str (Bind.I RW RcvResult Cnf'Result ind (1,)) = "6"

15 j be2str (Bind.I RESULT RESP WAIT'Abort req (1,)) = "9"

16 j be2str (Bind.I RESULT RESP WAIT'TimerTO A Max (1,))= "11" (� �xed 0 �)
17 j be2str (Bind.I RESULT RESP WAIT'TimerTO A O� (1,))= "0"

18 j be2str (Bind.I RESULT RESP WAIT'Result res (1,)) = "7"

19 j be2str (Bind.I RESULT RESP WAIT'RcvAbort (1,)) = "11"

20 j be2str (Bind.I WAIT TIMEOUT'Clear (1,)) = "0" (� �xed 9 �)
21 j be2str (Bind.I WAIT TIMEOUT'RcvResult (1,)) = "0"

22 j be2str (Bind.I WAIT TIMEOUT'RcvAbort (1,)) = "0" (� �xed 11 �)
23 j be2str (Bind.I WAIT TIMEOUT'TimerTO W (1,)) = "0"

24 j be2str (Bind.I ABORT'ProviderAbort (1,fisn=I WAIT TIMEOUT,it= g))= "0"

25 j be2str (Bind.I ABORT'ProviderAbort (1,)) = "11"

26 (� Responder Protocol Entity �)
27 j be2str (Bind.R LISTEN'RcvInvoke (1,)) = "2"

28 j be2str (Bind.R LISTEN'RcvInvoke Fail (1,)) = "0"

29 j be2str (Bind.R TIDOK WAIT'RcvAck (1,)) = "2"

30 j be2str (Bind.R TIDOK WAIT'RcvAbort (1,)) = "0"

31 j be2str (Bind.R TIDOK WAIT'RcvInvoke (1,)) = "0"

32 j be2str (Bind.R INVOKE RESP WAIT'RcvAbort (1,)) = "12"

33 j be2str (Bind.R INVOKE RESP WAIT'Invoke res (1,)) = "3"

34 j be2str (Bind.R INVOKE RESP WAIT'TimerTO A Max (1,))= "12" (� �xed 0 �)
35 j be2str (Bind.R INVOKE RESP WAIT'TimerTO A O� (1,))= "0"

36 j be2str (Bind.R INVOKE RESP WAIT'Abort req (1,)) = "10"

37 j be2str (Bind.R INVOKE RESP WAIT'Result req (1,)) = "5"

38 j be2str (Bind.R RESULT WAIT'RcvAbort (1,)) = "12"

39 j be2str (Bind.R RESULT WAIT'RcvInvoke (1,)) = "0"

40 j be2str (Bind.R RESULT WAIT'TimerTO A (1,)) = "0"

41 j be2str (Bind.R RESULT WAIT'Abort req (1,)) = "10"

42 j be2str (Bind.R RESULT WAIT'Result req (1,)) = "5"

43 j be2str (Bind.R RESULT RESP WAIT'RcvAbort (1,)) = "12"

44 j be2str (Bind.R RESULT RESP WAIT'RcvAck Cnf (1,)) = "8"

45 j be2str (Bind.R RESULT RESP WAIT'TimerTO R Max (1,))= "12"

46 j be2str (Bind.R RESULT RESP WAIT'TimerTO R (1,)) = "0"

47 j be2str (Bind.R RESULT RESP WAIT'Abort req (1,)) = "10"

48 j be2str (Bind.R ABORT'ProviderAbort (1,frsn=R TIDOK WAIT,rt= g))= "0"

49 j be2str (Bind.R ABORT'ProviderAbort (1,)) = "12"

50 j be2str () = "ERROR";

51

52 fun ArcToFSM a = be2str(ArcToBE(a));

In Listing D.4, the changes described in Section 7.2.2 that impact on the map-

ping to service primitives are identi�ed by the comment �xed, where the value before

the change is also given. For example, the occurrence of TimerTO A Max on page

R INVOKE RESP WAIT would not correspond to a primitive being delivered from the

WTP Speci�cation, but the introduction of Assumption 7.8 now means a TR-Abort.ind

(12) is delivered to the TR-Resp-User.

As well as mapping binding elements to service primitives, nodes in the state space

220

that correspond to halt states in the FSA must also be determined. The function Find-

Halts() in Listing D.5 speci�es that only dead markings are mapped to halt states.

Listing D.5: Standard ML code for mapping state space nodes to halt states for the

TR-Protocol CPN

1 (� Find nodes that correspond to halt states in TR�Protocol CPN �)
2 (� Node �> bool �)
3 fun FindHalts n = DeadMarking(n);

Figure D.2 shows the Standard ML queries used in Design/CPN, and the results, that

de�ne the mapping speci�cation (the functions in Listings D.4 and D.5 are included in

the �le map-spec.sml) and perform the mapping.

Convert State Space to FSA

use "map-spec.sml"; [opening map-spec.sml]
[opening ../sml/og2fsm.sml]
val og2fsmtrans = fn : (Arc -> string) -> string -
> unit
val og2fsmhalts = fn : (Node -> bool) -> string ->
unit
val it = () : unit
val it = () : unit
val it = () : unit
val it = () : unit
val be2str = fn : Bind.Elem -> string
val ArcToFSM = fn : Arc -> string
val FindHalts = fn : Node -> bool
val it = () : unit

og2fsmtrans ArcToFSM "trans.txt";
og2fsmhalts FindHalts "halts.txt";

val it = () : unit
val it = () : unit

Figure D.2: Standard ML code that uses the mapping speci�cation to convert the state

space of Con�guration 1 of the TR-Protocol to an FSA

D.3.2 Language Statistics

The language analysis of the TR-Protocol was performed using FSM [4]. Listing D.6 is the

output of a terminal session where the statistics of the FSA (stored in the �le ogmin.fsm)

and language (stored in the �le lang.txt) for Con�guration 1 of the TR-Protocol are

shown. Also shown is the number of sequences for which speci�c errors occur. These are

calculated by searching the language (with an awk script [43]) for all sequences leading

to the error. For example, the �le twoiind.awk (Line 23, Listing D.6) is used to �nd

all sequences that contain two TR-Invoke.ind primitives (designated as [iind] in the

�le lang.txt). Applying the script in twoiind.awk and counting the sequences returns

the result in Line 35 of Listing D.6. twoICNF.awk and noires.awk are similar scripts

to twoiind.awk (see Listing D.6). Each script also has a counterpart script (denoted

with -not in the �le name) which returns the sequences that do not match the pattern.

Further interpretation of the results shown in Listing D.6 is given in Section 8.3.3.

221

Listing D.6: Terminal session output showing statistics for the TR-Protocol language of

Con�guration 1

1 > date

2 Thu Aug 23 09:59:08 ACST 2001

3 > pwd

4 /home/sgordon/thesis/cpn/protocol/ initial /p31F

5 > fsminfo �n ogmin.fsm

6 class basic

7 transducer n

8 # of states 61

9 # of arcs 278

10 initial state 0

11 # of �nal states 6

12 # of eps 0

13 # of accessible states 61

14 # of coaccessible states 61

15 # of connected states 61

16 # strongly conn components 61

17 > cat langstats .awk

18 BEGIN fmin=100g
19 f if (length($0)<min) min=length($0)g
20 f if (length($0)>max) max=length($0)g
21 END fprint ("LANG: ", NR, max/6, min/6)g
22 > cat twoiind .awk

23 $1 ~ /n[iind n](n[....n])�n[iind n]/ f print $0g
24 > cat twoICNF.awk

25 $1 ~ /n[ICNFn](n[[ra]...n])�n[ICNFn]/ fprint $0g
26 > cat noires .awk

27 $1 ~ /n[iind n](n[[^ i]..[^ s]n])�n[ICNFn]/ fprint $0g
28 > gawk �f langstats.awk lang. txt

29 LANG: 59562 14 2

30 > gawk �f langstats.awk di�ang�protocol. txt
31 LANG: 26 6 4

32 > gawk �f langstats.awk di�ang�service . txt

33 LANG: 59406 14 5

34 > gawk �f twoiind.awk di�ang�service . txt j gawk �f langstats .awk

35 LANG: 57944 14 6

36 > gawk �f twoiind�not.awk di�ang�service. txt j gawk �f twoICNF.awk jn
37 ? gawk �f langstats .awk
38 LANG: 1368 11 6

39 > gawk �f twoiind�not.awk di�ang�service. txt j gawk �f twoICNF�not.awk jn
40 ? gawk �f noires.awk j gawk �f langstats .awk

41 LANG: 92 7 5

42 > gawk �f twoiind�not.awk di�ang�service. txt j gawk �f twoICNF�not.awk jn
43 ? gawk �f noires�not.awk

44 [IREQ][iind][ires][ICNF][rreq][RIND][rcnf]

45 [IREQ][iind][ires][rreq][ICNF][RIND][rcnf]

46 >

222

Appendix E

Revised Transaction Protocol CPN

and Results

Chapter 8 presents a set of suggested changes to �x the errors discovered in the TR-

Protocol. These changes lead to the Revised TR-Protocol, which is analysed in Chapter 9.

This appendix presents: the Revised TR-Protocol CPN in full (Section E.1), the state

space analysis queries (Section E.2); and the results obtained from the model (Sections E.3

and E.4).

E.1 Revised TR-Protocol CPN

This section presents the complete Revised TR-Protocol CPN (Figure E.1 shows the hi-

erarchy page). This model implements the suggested changes to the TR-Protocol (Chap-

ter 7) that are given in Chapter 8. The declarations are listed in Listing E.1, followed by

the 15 CPN pages. The arc inscriptions and guards that have been changed are given in

bold. New transitions are outlined by a thick line. Appendix F describes the changes to

the CPN so that multiple con�gurations can be analysed in Design/CPN.

223

Hierarchy#10010

Declarations#900

I_NULL#111

I_RESULT_WAIT#112

I_RESULT_RESP_WAIT#113

I_WAIT_TIMEOUT#114

R_LISTEN#121

R_TIDOK_WAIT#122

R_INVOKE_RESP_WAIT#123

R_RESULT_WAIT#124

R_RESULT_RESP_WAIT#125

I_RW_RcvResult_Cnf#1121

TR_Init_PE#11 TR_Resp_PE#12

TR_Protocol#1 M Prime

Queries#21

Analysis Pages

I_ABORT#115 R_ABORT#126

RcvResult_Cnf

I_NULL

I_RESULT_WAIT

I_RESULT_RESP_WAIT

I_WAIT_TIMEOUT

R_LISTEN

R_TIDOK_WAIT

R_INVOKE_RESP_WAIT

R_RESULT_WAIT

R_RESULT_RESP_WAIT

TR_Init_PE TR_Resp_PE

I_ABORT R_ABORT

Figure E.1: Hierarchy page in the Revised TR-Protocol CPN

Listing E.1: Declarations for the Revised TR-Protocol CPN

1 (� Design/CPN Options �)
2 NewOGGeneration := true;

3

4 (� Base Types & Variables �)
5 color Integer = int ;

6 color Flag = bool with (F,T);

7 color RCR c = int;

8 var u, TorF:Flag;

9

10 (� Maximum Counter Values �)
11 val RCRImax = 1;

12 val RCRRmax = 1;

13

14 (� PDUs �)
15 color InvokePDU c = record

16 RID:Flag � (� Retransmission Indicator �)
17 UP:Flag; (� User Acknowledgement �)
18 color ResultPDU c = record

19 RID:Flag � (� RID �)
20 CNF:Flag; (� Con�rmed from user �)
21 color AckPDU c = record

22 RID:Flag � (� Retransmission Indicator �)
23 TveTok:Flag � (� TID Veri�cation /TID Ok �)
24 CNF:Flag; (� Con�rmed from user �)
25 color AbortPDU c = with abort; (� No �elds �)
26 color PDU = union InvokePDU:InvokePDU c +

27 ResultPDU:ResultPDU c +

224

28 AckPDU:AckPDU c +

29 AbortPDU:AbortPDU c;

30 var invoke :InvokePDU c;

31 var result :ResultPDU c;

32 var ack:AckPDU c;

33

34 (� Initiator & Responder State Names �)
35 color IStateName = with

36 I NULL j
37 I RESULT WAIT j
38 I RESULT RESP WAIT j
39 I WAIT TIMEOUT ;

40

41 color RStateName = with

42 R LISTEN j
43 R TIDOK WAIT j
44 R INVOKE RESP WAIT j
45 R RESULT WAIT j
46 R RESULT RESP WAIT ;

47

48 var isn :IStateName;

49 var rsn :RStateName;

50

51 (� Transaction State Information � Initiator �)
52 color ITransData = record

53 Uack:Flag � (� True if User ack requested �)
54 RCR:RCR c � (� Retransmission Counter �)
55 AckSent:Flag � (� True if Ack(TIDok/TIDve) sent �)
56 Ucnf:Flag � (� True if user has con�rmed �)
57 Timer:Flag; (� True if Timer on �)
58

59 (� Transaction State Information � Responder �)
60 color RTransData = record

61 Uack:Flag � (� True if User ack requested �)
62 RCR:RCR c � (� Retransmission Counter �)
63 AckSent:Flag � (� True if Ack(TIDok/TIDve) sent �)
64 AbortSent:Flag � (� True if Abort sent �)
65 Ucnf:Flag � (� True if user has con�rmed �)
66 Timer:Flag; (� True if Timer on �)
67

68 var it : ITransData;

69 var rt :RTransData;

70

71 color InitState = product IStateName � ITransData;

72 color RespState = product RStateName � RTransData;

73

74 (� Functions for modifying Initiator Transaction data �)
75 fun AssignUackI (t :ITransData, u:Flag): ITransData=

76 fUack=u,
77 RCR=#RCR(t),

78 AckSent=#AckSent(t),

79 Ucnf=#Ucnf(t),

225

80 Timer=#Timer(t)g;
81 fun SetAckSentI (t :ITransData):ITransData=

82 fUack=#Uack(t),

83 RCR=#RCR(t),

84 AckSent=T,

85 Ucnf=#Ucnf(t),

86 Timer=#Timer(t)g;
87 fun IncRCRI (t:ITransData):ITransData=

88 fUack=#Uack(t),

89 RCR=#RCR(t)+1,

90 AckSent=#AckSent(t),

91 Ucnf=#Ucnf(t),

92 Timer=#Timer(t)g;
93 fun StartTimerI (t :ITransData):ITransData=

94 fUack=#Uack(t),

95 RCR=#RCR(t),

96 AckSent=#AckSent(t),

97 Ucnf=#Ucnf(t),

98 Timer=Tg;
99 fun StopTimerI (t :ITransData):ITransData=

100 fUack=#Uack(t),

101 RCR=#RCR(t),

102 AckSent=#AckSent(t),

103 Ucnf=#Ucnf(t),

104 Timer=Fg;
105 fun SetUcnfI (t :ITransData):ITransData=

106 fUack=#Uack(t),

107 RCR=#RCR(t),

108 AckSent=#AckSent(t),

109 Ucnf=T,

110 Timer=#Timer(t)g;
111 fun ResetUcnfI (t :ITransData):ITransData=

112 fUack=#Uack(t),

113 RCR=#RCR(t),

114 AckSent=#AckSent(t),

115 Ucnf=F,

116 Timer=#Timer(t)g;
117 fun ClearInitI (t :ITransData):ITransData=

118 fUack=F,
119 RCR=0,

120 AckSent=F,

121 Ucnf=F,

122 Timer=Fg;
123

124 (� Functions for modifying Responder Transaction data �)
125 fun AssignUackR (t:RTransData, u:Flag):RTransData=

126 fUack=u,
127 RCR=#RCR(t),

128 AckSent=#AckSent(t),

129 AbortSent=#AbortSent(t),

130 Ucnf=#Ucnf(t),

131 Timer=#Timer(t)g;

226

132 fun SetAckSentR (t:RTransData):RTransData=

133 fUack=#Uack(t),

134 RCR=#RCR(t),

135 AckSent=T,

136 AbortSent=#AbortSent(t),

137 Ucnf=#Ucnf(t),

138 Timer=#Timer(t)g;
139 fun SetAbortSentR (t:RTransData):RTransData=

140 fUack=#Uack(t),

141 RCR=#RCR(t),

142 AckSent=#AckSent(t),

143 AbortSent=T,

144 Ucnf=#Ucnf(t),

145 Timer=#Timer(t)g;
146 fun IncRCRR (t:RTransData):RTransData=

147 fUack=#Uack(t),

148 RCR=#RCR(t)+1,

149 AckSent=#AckSent(t),

150 AbortSent=#AbortSent(t),

151 Ucnf=#Ucnf(t),

152 Timer=#Timer(t)g;
153 fun ResetRCRR (t:RTransData):RTransData=

154 fUack=#Uack(t),

155 RCR=0,

156 AckSent=#AckSent(t),

157 AbortSent=#AbortSent(t),

158 Ucnf=#Ucnf(t),

159 Timer=#Timer(t)g;
160 fun StartTimerR (t:RTransData):RTransData=

161 fUack=#Uack(t),

162 RCR=#RCR(t),

163 AckSent=#AckSent(t),

164 AbortSent=#AbortSent(t),

165 Ucnf=#Ucnf(t),

166 Timer=Tg;
167 fun StopTimerR (t:RTransData):RTransData=

168 fUack=#Uack(t),

169 RCR=#RCR(t),

170 AckSent=#AckSent(t),

171 AbortSent=#AbortSent(t),

172 Ucnf=#Ucnf(t),

173 Timer=Fg;
174 fun ClearRespR (t:RTransData):RTransData=

175 fUack=F,
176 RCR=0,

177 AckSent=F,

178 AbortSent=F,

179 Ucnf=F,

180 Timer=Fg;
181 fun SetUcnfR (t:RTransData):RTransData=

182 fUack=#Uack(t),

183 RCR=#RCR(t),

227

184 AckSent=#AckSent(t),

185 AbortSent=#AbortSent(t),

186 Ucnf=T,

187 Timer=#Timer(t)g;

HS

TR_Init_PE#11

TR_Init_PE

HS

TR_Resp_PE#12

TR_Resp_PE

InitToResp

PDU

RespToInit

PDU

Figure E.2: TR Protocol page in the Revised TR-Protocol CPN

HS

I_NULL#111

I_NULL

HS

I_WAIT_TIMEOUT#114

I_WAIT_TIMEOUT

InitToResp

P I/O

PDU

RespToInit

P In

PDU

HS

I_RESULT_WAIT#112

I_RESULT_WAIT

HS

I_RESULT_RESP_WAIT#113

I_RESULT_RESP_WAIT

Initiator

InitState

(I_NULL,
 {Uack=F,
 RCR=0,
 AckSent=F,
 Timer=F,
 Ucnf=F})

Initial Marking
Initiator

I_ABORT

HS

I_ABORT#115

Figure E.3: TR Init PE page in the Revised TR-Protocol CPN

228

HS

R_LISTEN#121

R_LISTEN

HS

R_TIDOK_WAIT#122

R_TIDOK_WAIT

HS

R_INVOKE_RESP_WAIT#123

R_INVOKE_RESP_WAIT

HS

R_RESULT_WAIT#124

R_RESULT_WAIT

HS

R_RESULT_RESP_WAIT#125

R_RESULT_RESP_WAIT

InitToResp

P In

PDU

RespToInit

P Out

PDU

Responder

RespState

(R_LISTEN,
 {Uack=F,
 RCR=0,
 AckSent=F,
 Timer=F,
 Ucnf=F,
 AbortSent=F})

Initial Marking
Responder

R_ABORT

HS

R_ABORT#126

Figure E.4: TR Resp PE page in the Revised TR-Protocol CPN

Invoke_req

UserAckFlag

RespToInit

PDU

P In

InitToResp

PDU

P Out

RcvAck_Tve

[#TveTok(ack)]

Initiator

InitState

P I/O

1/2

F

(TR-Invoke.req)

u

AbortPDU abort

AckPDU ack

(I_NULL,it)

(I_RESULT_WAIT,
 StartTimerI(
 AssignUackI(it,u)))

InvokePDU
{RID=F,UP=u}(I_NULL,it)

(I_NULL,it)

Figure E.5: I NULL page in the Revised TR-Protocol CPN

229

Initiator

InitState

P I/O

Abort_req

RcvAck_Cnf

[not(#TveTok(ack)) andalso
#CNF(ack) andalso not(#Ucnf(it))]

[#RCR(it)=RCRImax
andalso #Timer(it)]

TimerTO_R_Max

RcvResult

[not(#CNF(result))
orelse #Ucnf(it)]

RcvAbort

TimerTO_R

[#RCR(it)<RCRImax
andalso not(#AckSent(it))
andalso #Timer(it)]

RespToInit

PDU

P In

TimerTO_R_Tve

[#RCR(it)<RCRImax
andalso #AckSent(it)
andalso #Timer(it)]

PDU

InitToResp

P I/O

RcvResult_Cnf

HS

I_RW_RcvResult_Cnf#1121

RcvAck_Tve

[#TveTok(ack)
andalso
#RCR(it)<RCRImax]

(TR-Abort.ind)

(TR-Invoke.cnf)

(TR-Result.ind)

(TR-Invoke.cnf
TR-Result.ind)

(TR-Abort.ind)

10

1

2

3

4

6

8

7

9

RcvAck

[not(#TveTok(ack)) andalso
(not(#CNF(ack)) orelse #Ucnf(it))]

(TR-Abort.req)

ProviderAbort

[#RCR(it)=0]

UserAbort

[#RCR(it)=0]
(TR-Abort.req)

(TR-Abort.ind)

(I_RESULT_WAIT,it)

AckPDU ack(I_RESULT_WAIT,it)

(I_RESULT_WAIT,
 SetUcnfI(
 StopTimerI(it)))

(I_RESULT_WAIT,it)

(I_RESULT_WAIT,it)

(I_RESULT_WAIT,
 StartTimerI(
 IncRCRI(it)))

InvokePDU {RID=T,
UP=#Uack(it)}

AckPDU {RID=T,
TveTok=T,CNF=F}(I_RESULT_WAIT,it)

(I_RESULT_WAIT,it)

(I_RESULT_RESP_WAIT,
 StartTimerI(
 ResetUcnfI(it)))

ResultPDU result

(I_RESULT_WAIT,it) AbortPDU abort

(I_RESULT_WAIT,
 StartTimerI(
 IncRCRI(it)))

AbortPDU abort

ResultPDU result(I_RESULT_WAIT,it)

(I_RESULT_RESP_WAIT,
 StartTimerI(
 ResetUcnfI(it)))

(I_RESULT_WAIT,it)
AckPDU {RID=F,
TveTok=T,CNF=F}

(I_RESULT_WAIT,
 StartTimerI(
 IncRCRI(
 SetAckSentI(it))))

AckPDU ack

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

AckPDU ack

(I_RESULT_WAIT,
 StopTimerI(it))

(I_RESULT_WAIT,it)

InvokePDU invoke

InvokePDU invoke(I_RESULT_WAIT,it)

(I_NULL,
 ClearInitI(it))

(I_RESULT_WAIT,it)

(I_NULL,
 ClearInitI(it))

Figure E.6: I RESULT WAIT page in the Revised TR-Protocol CPN

230

Initiator

InitState

P I/O

RespToInit

PDU

P In

Invoke_cnf

[#CNF(result) andalso
not(#Ucnf(it))]

Result_ind

TempStateITransData

(TR-Invoke.cnf)

(TR-Result.ind)

(I_RESULT_WAIT,it) ResultPDU result

it

it(I_RESULT_RESP_WAIT,
 StartTimerI(
 ResetUcnfI(it)))

Figure E.7: I RW RcvResult Cnf page in the Revised TR-Protocol CPN

Initiator

InitState

P I/O

RespToInit

PDU

P In

PDU

InitToResp

P Out

Result_res

RcvAbort

Abort_req

[#Uack(it)
andalso #Timer(it)]

TimerTO_A_Max

TimerTO_A_Off

[not(#Uack(it))
andalso #Timer(it)]

(TR-Abort.ind)

(TR-Abort.ind)

1/2

3

4

8

9

(TR-Abort.req)

(TR-Result.res)

(I_RESULT_RESP_WAIT,it)

(I_RESULT_RESP_WAIT,it)

(I_RESULT_RESP_WAIT,it) AbortPDU abort

AbortPDU abort

(I_WAIT_TIMEOUT,
 StartTimerI(
 SetUcnfI(it)))

AckPDU {RID=F,
TveTok=F,CNF=T}

(I_RESULT_RESP_WAIT,it) AbortPDU abort

AckPDU {RID=F,
TveTok=F,CNF=F}

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

(I_WAIT_TIMEOUT,
 StartTimerI(it))

(I_RESULT_RESP_WAIT,it)

Figure E.8: I RESULT RESP WAIT page in the Revised TR-Protocol CPN

231

PDU

InitToResp

P Out

RespToInit

PDU

P In

Clear

RcvAbort

Initiator

InitState

P I/O

TimerTO_W

[#Timer(it)]

RcvResult

[#RID(result)]

7

2/3

4

6

(I_WAIT_TIMEOUT,it)

(I_WAIT_TIMEOUT,it) AbortPDU abort

(I_WAIT_TIMEOUT,it)

(I_WAIT_TIMEOUT,it)

AckPDU {RID=T,
CNF=#Ucnf(it),
TveTok=F}

ResultPDU result

(I_WAIT_TIMEOUT,it)

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

(I_NULL,
 ClearInitI(it))

Figure E.9: I WAIT TIMEOUT page in the Revised TR-Protocol CPN

InitToResp

PDU

P In

RespToInit

PDU

P Out

Responder

RespState

P I/O
RcvInvoke_Fail

[#Timer(rt)=F]

RcvInvoke
[#Timer(rt)=F]

(TR-Invoke.ind) 1/2

3

RcvInvoke_Abo

[#Timer(rt)=T]

First

Flag

T

InvokePDU invoke

InvokePDU invoke

(R_INVOKE_RESP_WAIT,
 StartTimerR(
 AssignUackR(rt,#UP(invoke))))

AckPDU {RID=F,
TveTok=T,CNF=F}

(R_LISTEN,rt)

(R_TIDOK_WAIT,
 AssignUackR(rt,#UP(invoke)))

(R_LISTEN,rt)

(R_LISTEN,rt)

(R_LISTEN,rt)InvokePDU invoke

AbortPDU abort

T

TorF

F

F

Figure E.10: R LISTEN page in the Revised TR-Protocol CPN

232

Responder

RespState

P I/O

RcvAck

[#TveTok(ack)]

RcvAbort

InitToResp

PDU

P In

RcvInvoke

[#RID(invoke)]

RespToInit

PDU

P Out

1

3

5

(TR-Invoke.ind)
(R_INVOKE_RESP_WAIT,
 StartTimerR(rt))

(R_TIDOK_WAIT,rt)

AckPDU ack

AbortPDU abort

(R_TIDOK_WAIT,rt)

(R_LISTEN,
 StartTimerR(
 ClearRespR(rt)))

InvokePDU invoke (R_TIDOK_WAIT,rt)

(R_TIDOK_WAIT,rt)AckPDU {RID=T,
TveTok=T,CNF=F}

Figure E.11: R TIDOK WAIT page in the Revised TR-Protocol CPN

InitToResp

PDU

P In

RespToInit

PDU

P Out

Responder

RespState

P I/O

RcvAbort

Abort_req

Invoke_res

[#Uack(rt)
andalso #Timer(rt)]

TimerTO_A_Max

TimerTO_A_Off

[not(#Uack(rt))
andalso #Timer(rt)]

Result_req

[not(#Uack(rt))]

(TR-Abort.ind)

(TR-Abort.ind)

1

2

3

4

8

9

(TR-Invoke.res)

(TR-Abort.req)

(TR-Result.req)

(R_INVOKE_RESP_WAIT,rt)

(R_LISTEN,
 StartTimerR(
 ClearRespR(rt)))

(R_INVOKE_RESP_WAIT,rt)AbortPDU abort

(R_INVOKE_RESP_WAIT,rt)

(R_INVOKE_RESP_WAIT,rt)

(R_RESULT_WAIT,
 SetAckSentR(
 StopTimerR(rt)))

AbortPDU abort

AckPDU {RID=F,
TveTok=F,CNF=F}

(R_RESULT_WAIT,
 StartTimerR(
 SetUcnfR(rt)))

(R_LISTEN,
 StartTimerR(
 SetAbortSentR(
 ClearRespR(rt))))

(R_INVOKE_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,
 StartTimerR(
 ResetRCRR(rt)))

ResultPDU {
RID=F,CNF=F}

AbortPDU abort

(R_INVOKE_RESP_WAIT,rt)

(R_LISTEN,
 StartTimerR(
 SetAbortSentR(
 ClearRespR(rt))))

Figure E.12: R INVOKE RESP WAIT page in the Revised TR-Protocol CPN

233

RespToInit

PDU

P Out

Responder

RespState

P I/O

RcvAbort

Abort_req

Result_req

TimerTO_A

[#Timer(rt)]

InitToResp

PDU

P In
RcvInvoke

[#AckSent(rt)
andalso
#RID(invoke)]

(TR-Abort.ind)

1

4

6

7

8

(TR-Abort.req)

(TR-Result.req)

(R_RESULT_WAIT,rt)

(R_RESULT_RESP_WAIT,
 StartTimerR(
 ResetRCRR(rt)))

(R_RESULT_WAIT,rt)

(R_RESULT_WAIT,rt)

(R_RESULT_WAIT,rt)

ResultPDU {RID=F,
CNF=#Ucnf(rt)}

AbortPDU abort

AckPDU {RID=F,
TveTok=F,
CNF=#Ucnf(rt)} (R_RESULT_WAIT,

 StopTimerR(
 SetAckSentR(rt)))

AbortPDU abort

(R_LISTEN,
 StartTimerR(
 SetAbortSentR(
 ClearRespR(rt))))

(R_LISTEN,
 StartTimerR(
 ClearRespR(rt)))

(R_RESULT_WAIT,rt)InvokePDU invoke

(R_RESULT_WAIT,rt)AckPDU {RID=T,
TveTok=F,
CNF=#Ucnf(rt)}

Figure E.13: R RESULT WAIT page in the Revised TR-Protocol CPN

234

RespToInit

PDU

P Out

Responder

RespState

P I/O

RcvAbort

Abort_req

RcvAck_Cnf

[not(#TveTok(ack))
andalso #CNF(ack)]

[#RCR(rt)=RCRRmax
andalso #Timer(rt)]

TimerTO_R_Max

TimerTO_R

[#RCR(rt)<RCRRmax
andalso #Timer(rt)]

InitToResp

PDU

P In

(TR-Abort.ind)

(TR-Abort.ind)

(TR-Result.cnf)

2

3

6

5

1

RcvAck

[not(#TveTok(ack))
andalso
not(#CNF(ack))]

(TR-Abort.req)

(R_RESULT_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,rt)
AbortPDU abort

(R_RESULT_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,rt)

(R_RESULT_RESP_WAIT,
 StartTimerR(
 IncRCRR(rt)))

ResultPDU {RID=T,
CNF=#Ucnf(rt)}

AckPDU ack

AbortPDU abort

(R_LISTEN,
 StartTimerR(
 ClearRespR(rt)))

(R_LISTEN,
 StartTimerR(
 ClearRespR(rt)))

(R_LISTEN,
 StartTimerR(
 ClearRespR(rt)))

(R_LISTEN,
 StartTimerR(
 SetAbortSentR(
 ClearRespR(rt))))

AckPDU ack

(R_LISTEN,
 StartTimerR(
 ClearRespR(rt)))

(R_RESULT_RESP_WAIT,rt)

Figure E.14: R RESULT RESP WAIT page in the Revised TR-Protocol CPN

Initiator

InitState

P I/O

ProviderAbort

[isn<>I_NULL]
(TR-Abort.ind*)

(isn,it)

(I_NULL,
 ClearInitI(it))

Figure E.15: I ABORT page in the Revised TR-Protocol CPN

Responder

RespState

P I/O

ProviderAbort

[rsn<>R_LISTEN]
(TR-Abort.ind*)

(rsn,rt)

(R_LISTEN,
 StartTimerR(
 ClearRespR(rt)))

Figure E.16: R ABORT page in the Revised TR-Protocol CPN

235

E.2 Revised TR-Protocol State Space Code

State spaces were calculated for more than 50 con�gurations of the Revised TR-Protocol

in Design/CPN. This section gives the query used to determine if dead markings are

expected or not.

A dead marking in the Revised TR-Protocol state space corresponds to either a termi-

nal marking or a deadlock. The form of a terminal marking is discussed in Chapter 8. The

function IsValidTerminal(), given in Listing E.2, returns true if a dead marking matches

the form of a terminal marking. This is used to prove Property 8.2 in Chapter 8.

Listing E.2: Standard ML code for checking validity of dead markings in Revised TR-

Protocol

1 fun IsValidTerminal (n)=

2 ((Mark.I NULL'UserAck 1 n) == empty)

3 andalso

4 ((Mark.I RW RcvResult Cnf'TempState 1 n) == empty)

5 andalso

6 ((Mark.I NULL' Initiator 1 n) == (1,(I NULL,fRCR=0,Uack=F,
7 AckSent=F,Ucnf=F,Timer=Fg))!!empty)

8 andalso

9 ((((Mark.R LISTEN'First 1 n) == (1,T)!!empty) andalso

10 ((Mark.R LISTEN'Responder 1 n) == (1,(R LISTEN,fRCR=0,Uack=F,
11 AckSent=F,Timer=F,Ucnf=F,AbortSent=Fg))!!empty) andalso

12 ((Mark.I NULL'InitToResp 1 n) == empty) andalso

13 ((Mark.R LISTEN'RespToInit 1 n) == empty))

14 orelse

15 (((Mark.R LISTEN'First 1 n) == (1,F)!!empty) andalso

16 ((Mark.R LISTEN'Responder 1 n) == (1,(R LISTEN,fRCR=0,Uack=F,
17 AckSent=F,Timer=T,Ucnf=F,AbortSent=Fg))!!empty orelse

18 (Mark.R LISTEN'Responder 1 n) == (1,(R LISTEN,fRCR=0,Uack=F,
19 AckSent=F,Timer=T,Ucnf=F,AbortSent=Tg))!!empty)));

E.3 Revised TR-Protocol Language Results

E.3.1 Binding Element Map Speci�cation

As with the TR-Protocol (see Appendix D), the binding elements in the Revised TR-

Protocol must be mapped to symbols representing service primitives for the language

analysis to be performed. Listing E.3 speci�es the mapping to service primitives. List-

ing E.4 shows that all dead markings are mapped to halt states.

Listing E.3: Standard ML code for mapping state space arcs to primitive numbers for

the Revised TR-Protocol CPN

1 (� Convert Arc in TR�Protocol state space into FSA string �)
2 (� Bind.Elem �> string �)

236

3 fun be2str (Bind.I NULL'Invoke req (1,)) = "1"

4 j be2str (Bind.I NULL'RcvAck Tve (1,)) = "0"

5 j be2str (Bind.I RESULT WAIT'Abort req (1,)) = "9"

6 j be2str (Bind.I RESULT WAIT'TimerTO R Max (1,)) = "11"

7 j be2str (Bind.I RESULT WAIT'TimerTO R (1,)) = "0"

8 j be2str (Bind.I RESULT WAIT'TimerTO R Tve (1,)) = "0"

9 j be2str (Bind.I RESULT WAIT'RcvAck Tve (1,)) = "0"

10 j be2str (Bind.I RESULT WAIT'RcvAck Cnf (1,)) = "4"

11 j be2str (Bind.I RESULT WAIT'RcvResult (1,)) = "6"

12 j be2str (Bind.I RESULT WAIT'RcvAbort (1,)) = "11"

13 j be2str (Bind.I RESULT WAIT'UserAbort (1,)) = "9"

14 j be2str (Bind.I RESULT WAIT'ProviderAbort (1,)) = "11"

15 j be2str (Bind.I RESULT WAIT'RcvAck (1,)) = "0"

16 j be2str (Bind.I RW RcvResult Cnf'Invoke cnf (1,)) = "4"

17 j be2str (Bind.I RW RcvResult Cnf'Result ind (1,)) = "6"

18 j be2str (Bind.I RESULT RESP WAIT'Abort req (1,)) = "9"

19 j be2str (Bind.I RESULT RESP WAIT'TimerTO A Max (1,))= "11"

20 j be2str (Bind.I RESULT RESP WAIT'TimerTO A O� (1,))= "0"

21 j be2str (Bind.I RESULT RESP WAIT'Result res (1,)) = "7"

22 j be2str (Bind.I RESULT RESP WAIT'RcvAbort (1,)) = "11"

23 j be2str (Bind.I WAIT TIMEOUT'Clear (1,)) = "0"

24 j be2str (Bind.I WAIT TIMEOUT'RcvResult (1,)) = "0"

25 j be2str (Bind.I WAIT TIMEOUT'RcvAbort (1,)) = "0"

26 j be2str (Bind.I WAIT TIMEOUT'TimerTO W (1,)) = "0"

27 j be2str (Bind.I ABORT'ProviderAbort (1,fisn=I WAIT TIMEOUT,it= g))="0"

28 j be2str (Bind.I ABORT'ProviderAbort (1,)) = "11"

29 (� Responder Protocol Entity �)
30 j be2str (Bind.R LISTEN'RcvInvoke (1,)) = "2"

31 j be2str (Bind.R LISTEN'RcvInvoke Fail (1,)) = "0"

32 j be2str (Bind.R LISTEN'RcvInvoke Abo (1,)) = "0"

33 j be2str (Bind.R TIDOK WAIT'RcvAck (1,)) = "2"

34 j be2str (Bind.R TIDOK WAIT'RcvAbort (1,)) = "0"

35 j be2str (Bind.R TIDOK WAIT'RcvInvoke (1,)) = "0"

36 j be2str (Bind.R INVOKE RESP WAIT'RcvAbort (1,)) = "12"

37 j be2str (Bind.R INVOKE RESP WAIT'Invoke res (1,)) = "3"

38 j be2str (Bind.R INVOKE RESP WAIT'TimerTO A Max (1,))= "12"

39 j be2str (Bind.R INVOKE RESP WAIT'TimerTO A O� (1,))= "0"

40 j be2str (Bind.R INVOKE RESP WAIT'Abort req (1,)) = "10"

41 j be2str (Bind.R INVOKE RESP WAIT'Result req (1,)) = "5"

42 j be2str (Bind.R RESULT WAIT'RcvAbort (1,)) = "12"

43 j be2str (Bind.R RESULT WAIT'RcvInvoke (1,)) = "0"

44 j be2str (Bind.R RESULT WAIT'TimerTO A (1,)) = "0"

45 j be2str (Bind.R RESULT WAIT'Abort req (1,)) = "10"

46 j be2str (Bind.R RESULT WAIT'Result req (1,)) = "5"

47 j be2str (Bind.R RESULT RESP WAIT'RcvAbort (1,)) = "12"

48 j be2str (Bind.R RESULT RESP WAIT'RcvAck Cnf (1,)) = "8"

49 j be2str (Bind.R RESULT RESP WAIT'RcvAck (1,)) = "0"

50 j be2str (Bind.R RESULT RESP WAIT'TimerTO R Max (1,))= "12"

51 j be2str (Bind.R RESULT RESP WAIT'TimerTO R (1,)) = "0"

52 j be2str (Bind.R RESULT RESP WAIT'Abort req (1,)) = "10"

53 j be2str (Bind.R ABORT'ProviderAbort (1,frsn=R TIDOK WAIT,rt= g))="0"

54 j be2str (Bind.R ABORT'ProviderAbort (1,)) = "12"

237

55 (� used with state space with con�gurations only �)
56 (� j be2str (Bind. Initialize ' Con�gInit (1,)) = "0" �)
57 j be2str () = "ERROR";

58

59 (� Convert Arc in TR�Protocol state space into FSA string �)
60 (� Arc �> string �)
61 fun ArcToFSM a = be2str(ArcToBE(a));

Listing E.4: Standard ML code for mapping state space nodes to halt states for the

Revised TR-Protocol CPN

1 (� Find nodes that correspond to halt states in TR�Protocol CPN �)
2 (� Node �> bool �)
3 fun FindHalts n = DeadMarking(n);

E.3.2 Language Statistics

Tables E.1 gives the FSA and language statistics for the con�gurations analysed. These

statistics include: the number of nodes (N), arcs (A) and halt states (H) in the minimized

FSA; the number of sequences (Seq), including the shortest (S) and longest (L) in the

language; and the number of sequences in the TR-Protocol language but not in the

TR-Service language (NIS) and vice versa (NIP).

E.4 Revised TR-Protocol Sweep-Line Analysis

E.4.1 Standard ML Code

Listing E.5 gives the implementation of the progress measure described in Section 9.3.1.

Listing E.6 gives the code that performs the sweep-line analysis for a single con�guration.

The function sweep properties() performs on-the-y veri�cation of the desired properties

(see Section 9.3.2), whereas the function sweepanalyse con�g() does not. The code for

applying these functions to multiple con�gurations is given in Appendix F.

Listing E.5: Progress measure used in the sweep-line analysis of the Revised TR-Protocol

CPN

1 (� Select RCR element from ITransData �)
2 (� ITransData ms �> int �)
3 exception grab rcri Exn

4 fun grab rcri td ms =

5 let val td l = ms to list td ms;

6 fun mapout (fRCR,...g:ITransData) = RCR;

7 in if td ms == empty

8 then raise grab rcri Exn

9 else hd(map mapout td l)

10 end;

238

RCRmax UserAck=T UserAck=F

I R N A H Seq L S NIS NIP N A H Seq L S NIS NIP

0 0 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
0 1 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
0 2 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
0 3 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
0 4 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
1 0 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
1 1 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
1 2 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
1 3 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
1 4 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
2 0 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
2 1 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
2 2 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
2 3 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
2 4 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
3 0 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
3 1 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
3 2 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
3 3 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
3 4 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
4 0 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
4 1 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
4 2 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
4 3 19 61 2 130 8 2 0 0 19 63 4 182 8 2 0 0
4 4 19 61 2 130 8 2 0 0 - - - - - - - -
5 0 19 61 2 130 8 2 0 0 - - - - - - - -
6 0 19 61 2 130 8 2 0 0 - - - - - - - -
7 0 19 61 2 130 8 2 0 0 - - - - - - - -

Table E.1: Statistics on the size of the FSA for the Revised TR-Protocol con�gurations

239

11 (� Select RCR element from RTransData �)
12 (� RTransData ms �> int �)
13 exception grab rcrr Exn

14 fun grab rcrr td ms =

15 let val td l = ms to list td ms;

16 fun mapout (fRCR,...g:RTransData) = RCR;

17 in if td ms == empty

18 then raise grab rcrr Exn

19 else hd(map mapout td l)

20 end;

21 (� int � int �> int �)
22 fun gm(rcri , rcrr) =

23 let val rcrrbase = 1;

24 val rcribase = RCRRmax()+2;

25 in rcri � rcribase + rcrr� rcrrbase
26 end;

27

28 (� sweep�line progress measure. �)
29 (� CPN'NodeRec �> IntInf �)
30 fun WTPProgressMeasure CPN'n =

31 let val m csinit = OEMark. Initialize 'Con�gPlace 1

32 (CPN'OGUtils.NodeRecToStateRec (!CPN'n));

33 val m init state = ext col fst (OEMark.I NULL'Initiator 1

34 (CPN'OGUtils.NodeRecToStateRec (!CPN'n)));

35 val m tempstate = OEMark.I RW RcvResult Cnf'TempState 1

36 (CPN'OGUtils.NodeRecToStateRec (!CPN'n));

37 (� Initiator Transaction data is either stored in Initiator place

38 or TempState place �)
39 val m init data = if m tempstate == empty

40 then ext col snd (OEMark.I NULL'Initiator 1

41 (CPN'OGUtils.NodeRecToStateRec (!CPN'n)))

42 else m tempstate;

43 val m userack = OEMark.I NULL'UserAck 1

44 (CPN'OGUtils.NodeRecToStateRec (!CPN'n));

45 val m �rst = OEMark.R LISTEN'First 1

46 (CPN'OGUtils.NodeRecToStateRec (!CPN'n));

47 val m resp state = ext col fst (OEMark.R LISTEN'Responder 1

48 (CPN'OGUtils.NodeRecToStateRec (!CPN'n)));

49 val m resp data = ext col snd (OEMark.R LISTEN'Responder 1

50 (CPN'OGUtils.NodeRecToStateRec (!CPN'n)));

51 in

52 if m csinit == empty

53 then

54 (� End marking � Initiator �)
55 if (m init state == (1,I NULL)!!empty) andalso

56 (m userack == empty)

57 then

58 (� End marking � Responder �)
59 if (m resp state == (1,R LISTEN)!!empty) andalso

60 (m �rst == (1,F)!!empty)

61 then IntInf . fromInt (gm(RCRImax()+1,RCRRmax()+1))

62

240

63 (� General marking � Responder �)
64 else IntInf . fromInt (gm(RCRImax()+1,grab rcrr(m resp data)))

65

66 (� General marking � Initiator �)
67 else

68 (� End marking � Responder �)
69 if (m resp state == (1,R LISTEN)!!empty) andalso

70 (m �rst == (1,F)!!empty)

71 then IntInf . fromInt (gm(grab rcri (m init data),RCRRmax()+1))

72

73 (� General marking � Responder �)
74 else IntInf . fromInt (gm(grab rcri (m init data),

75 grab rcrr (m resp data)))

76

77 (� Initial marking � Initialize 'Con�gPlace �)
78 else IntInf . fromInt 0

79 end;

Listing E.6: Setup Design/CPN for sweep-line analysis of the Revised TR-Protocol CPN

1 (�
2 � Performs sweep�line analysis in Design/CPN of one con�guration of

3 � the Transaction Protocol . setup�con�gs.sml must have

4 � been included previously .

5 � ACKNOWLEDGEMENT: The majority of these functions were written by Lars

6 � Kristensen (University of South Australia), or are at

7 � least based on ones that he wrote.

8 �)
9 (� Install the progress measure (must be previously de�ned) �)
10 OGSweepFun.Set WTPProgressMeasure;

11

12 (� Function to start sweep for safety properties �)
13 fun SafetyAnalyse writelog (CPN'nodefun,CPN'arcfun,CPN'deadfun) =

14 let val = SLSafety.EvalNodes CPN'nodefun;

15 val = SLSafety.EvalArcs CPN'arcfun;

16 val = SLSafety.DeadMarkings CPN'deadfun;

17 in OGTimeSweep.Generate ~1 writelog

18 end;

19 fun CPN'StateRecToNodeRec (CPN'OGState fowner=ref(noderef),...g) = !noderef;

20

21 (� Perform the sweep �)
22 fun sweep analysesafety (gcnodelimit , globaltimelimit) con�g

23 (CPN'nodefun,CPN'arcfun,CPN'deadfun) =

24 let val = writelog ((printcon�g con�g)^"nn");
25 val = setcurcon�g con�g

26 val = OGSet.StopOptions fArcs = 0, Nodes = gcnodelimit,

27 Predicate = (fn => false),

28 Secs = globaltimelimit g;
29 val ((maxnodes,totalglob),CPN'time) =

30 timepro�le (fn () => SafetyAnalyse

31 writelog (CPN'nodefun,CPN'arcfun,CPN'deadfun));

32 val = writelog ("Sweep "^makestring(totalglob)^" "^

33 makestring(maxnodes)^" "^

241

34 CPN'time^"nn");
35 val savestats = (totalglob ,maxnodes,CPN'time);

36 val = DeleteOccGraph ();

37 val = OGSet.StopOptions fArcs = 0, Nodes = 0,

38 Predicate = (fn => false),

39 Secs = globaltimelimit g;
40 in savestats

41 end;

42

43 (� Setup properties to be calculated and perform sweep �)
44 (� (int � int) �> (int � int � bool) �> unit �)
45 fun sweep properties (gcnodelimit , globaltimelimit) con�g =

46 let (� �les and communication place markings �)
47 val trans�lename = (printcon�g con�g)^"trans . txt";

48 val dead�lename = (printcon�g con�g)^"halts . txt";

49 val markfun i2r = (OEMark.TR Protocol'InitToResp 1);

50 val markfun r2i = (OEMark.TR Protocol'RespToInit 1);

51 val transout�le = TextIO.openOut trans�lename;

52 val = (CPN'storearcs := true);

53 (� assume that all trans are dead �)
54 val deadtrans = ref (TI. All);

55 (� write FSM data to �le and �nd dead transitions �)
56 fun getfsminputanddt (CPN'src,CPN'b,CPN'dest) =

57 let

58 val srcnodeno = CPN'OGUtils.GetNodeNo

59 (CPN'StateRecToNodeRec CPN'src);

60 val destnodeno = CPN'OGUtils.GetNodeNo

61 (CPN'StateRecToNodeRec CPN'dest);

62 val str = (makestring srcnodeno)^" "^

63 (makestring destnodeno)^" "^

64 (be2str CPN'b)^"nn"
65 val = TextIO.output (transout�le , str)

66 in

67 (deadtrans := (List . �lter

68 (fn CPN'b1 => CPN'b1 <> (BEToTI CPN'b)) (!deadtrans)))

69 end;

70 (� calculate upper integer bounds of communication places �)
71 val curmax i2r = ref 0;

72 val curmax r2i = ref 0;

73 fun checkmarking CPN'n =

74 (curmax i2r := Int .max(mssize (markfun i2r CPN'n),(!curmax i2r));

75 curmax r2i := Int .max(mssize (markfun r2i CPN'n),(!curmax r2i)))

76 (� check dead markings are desired �)
77 fun node�lter CPN'n =

78 if IsValidTerminal (CPN'n)

79 then st Node(CPN'OGUtils.GetNodeNo (CPN'StateRecToNodeRec CPN'n))^"nn"
80 else "DEADLOCK!"^st Node(CPN'OGUtils.GetNodeNo

81 (CPN'StateRecToNodeRec CPN'n))^"nn";
82 val deadout�le = TextIO.openOut dead�lename;

83 val countdm = ref 0;

84 fun deadfun CPN'n = (TextIO.output (deadout�le, node�lter CPN'n);

85 CPN'inc countdm);

242

86 (� perform a sweep, checking the desired properties �)
87 val savestats=sweep analysesafety (gcnodelimit , globaltimelimit) con�g

88 (checkmarking,getfsminputanddt,deadfun)

89 (� write stats to log �le �)
90 val = writelog ((printcon�g con�g)^" "^

91 makestring(#1(savestats))^" "^

92 makestring(#2(savestats))^" "^

93 (#3(savestats))^" "^

94 makestring(!countdm)^" "^

95 makestring(!curmax i2r)^" "^

96 makestring(!curmax r2i)^" "^

97 makestring(length (!deadtrans))^" "^

98 printdeadtis (TI. All ,! deadtrans)^"nn");
99 val = TextIO.closeOut (transout�le);

100 val = TextIO.closeOut (deadout�le);

101 in ()

102 end;

103

104 (� Perform sweep analysis without calculating the properties , only the nodes �)
105 (� (int � int) �> (int � int � bool) �> unit �)
106 fun sweepanalyse con�g (gcnodelimit , globaltimelimit) con�g =

107 let val = setcurcon�g con�g

108 val = writelog ("Sweep "^(printcon�g con�g)^"nn");
109 val = OGSet.StopOptions fArcs = 0, Nodes = gcnodelimit,

110 Predicate = (fn => false),

111 Secs = globaltimelimit g;
112 (� do the sweep �)
113 val ((maxnodes,totalglob),CPN'time) =

114 timepro�le (fn () => OGTimeSweep.Generate ~1 writelog);

115 (� write stats to log �le �)
116 val = writelog ((printcon�g con�g)^" "^

117 makestring(totalglob)^" "^

118 makestring(maxnodes)^" "^

119 (CPN'time)^"nn");
120 val = DeleteOccGraph ();

121 val = OGSet.StopOptions fArcs = 0, Nodes = 0,

122 Predicate = (fn => false),Secs = globaltimelimit g;
123 in ()

124 end;

243

Appendix F

Tools for Analysing Multiple

Con�gurations

Veri�cation of the TR-Protocol and Revised TR-Protocol has comprised generating the

state space and minimizing the FSA for a large set of di�erent parameter values, or

con�gurations. Design/CPN has standard support for analysing only one con�guration

at a time. The typical process is to set the initial values in the Design/CPN Editor, switch

to the Design/CPN State Space Tool (which takes approximately 5 minutes) and calculate

the state space. We have used several Standard ML functions to do a batch calculation

of the state space for a set of con�gurations. Section F.1 describes these functions, and

how the Revised TR-Protocol CPN is changed to facilitate this process. Section F.2 lists

a set of shell scripts used after the state spaces are calculated for minimizing the FSA

and collecting relevant statistics.

The Standard ML functions for calculating batch state spaces are due to Dr Lars Kris-

tensen. Lars wrote most of the functions, although some have been adapted speci�cally

to the Revised TR-Protocol CPN.

F.1 Analysing Multiple State Spaces in Design/CPN

The three parameters used in the Revised TR-Protocol CPN are: the two constants

RCRImax and RCRRmax ; and the initial marking of the place UserAck, UserAck. Typical

use of Design/CPN requires the values of these parameters to be set in the Editor. Once

the state space is calculated, we must return to the Editor, change the values, and re-

switch to the State Space Tool. This is a time consuming process. To setup the CPN to

perform state space analysis of multiple con�gurations automatically, we designate the

two constants as reference variables and introduce a new transition that must occur before

any other transition in the CPN. This transition, called Con�gInit, is shown in Figure F.1

along with a new place, called Con�gPlace, with an initial marking of 1`e. The output

244

place of Con�gInit is a fusion place with UserAck on the I NULL page (Figure E.5). UserAck

in Figure E.5 no longer has an initial marking.

UserAckFlag
FG

UserAck

ConfigInit

ConfigPlaceE

e

e

UserAck()

Figure F.1: Initialise page for initialising the Revised TR-Protocol CPN for analysing

multiple con�gurations

When the State Space Tool is entered, the �rst and only transition that can occur

is Con�gInit. The function UserAck() is executed, which reads the value of the refer-

ence variable UserAckC. This reference variable is set before the state space calculation

starts using the function setcurcon�g() (described shortly). The occurrence of Con�gInit

e�ectively gives UserAck an initial marking.

All references to the two constants (RCRImax and RCRRmax) in the Revised TR-

Protocol CPN are replaced with the functions RCRImax() and RCRRmax(), respectively.

These functions read the value of the corresponding reference variables (RCRImaxC and

RCRRmaxC). Again, the values of the reference variables are set before the state space

calculation starts.

Listing F.1 gives the new declarations used for analysing multiple con�gurations. The

declarations no longer used in Listing E.1 are commented out (i.e. the last two lines in

Listing F.1). Each reference variable is given a default value (e.g. F for UserAckC). The

process for calculating multiple con�gurations is: set the values of the three reference

variables (parameters), calculate the state space, record the relevant results, delete the

state space, set the parameter values for the next con�guration, and so on. The Standard

ML code for this process is given in Listings F.2 and F.3.

Listing F.1: Changes to declarations of the Revised TR-Protocol CPN to analyse multiple

con�gurations

1 (� ��� CONFIGS ��� �)
2 color E = with e;

3 val UserAckC = ref F;

4 val RCRImaxC = ref 2;

5 val RCRRmaxC = ref 2;

6 fun UserAck() = (!UserAckC);

7 fun RCRImax() = (!RCRImaxC);

8 fun RCRRmax() = (!RCRRmaxC);

9 (� ��� END CONFIGS ��� �)
10

245

11 (� Maximum Counter Values �)
12 (� val RCRImax = 1; �)
13 (� val RCRRmax = 1; �)

Listing F.2 includes a general set of functions used in setting up the analysis of

multiple con�gurations. The functions must be de�ned before those in Listing F.3, or if

sweep-line analysis is being performed, Listing F.4. The functions, with comments, are

self explanatory.

Listing F.2: Standard ML code to setup Design/CPN to analyse multiple con�gurations

1 (�
2 � These functions setup Design/CPN so that the state spaces of the

3 � Transaction Protocol can be calculated in batch. That is , the set of

4 � parameters are instantiated , the state space calculated and results saved

5 � and then the next set of parameters instantiated , and so on. These

6 � functions must be used in conjunction with those that start the analysis

7 � either for ordinary state space (e.g . ss�con�gs.sml) or sweep�line

8 � analysis (e.g . sweep�con�gs.sml).

9 �
10 � ACKNOWLEDGEMENT: The majority of these functions were written by Lars

11 � Kristensen (University of South Australia), or are at

12 � least based on ones that he wrote.

13 �)
14

15 (� Log �le to save statistics �)
16 val log�lename = ref "con�g�stats. log";

17

18 (� Get current time �)
19 fun gettime () = Date.toString (Date.fromTimeLocal (Time.now ()));

20

21 (� Write message to the log �le �)
22 fun writelog CPN'message =

23 let val CPN'�le = TextIO.openAppend (!log�lename);

24 val = TextIO.output (CPN'�le ,CPN'message);

25 in TextIO.closeOut CPN'�le

26 end;

27

28 (� Calculate the CPU time used �)
29 fun timepro�le CPN'fun =

30 let val CPN'timer = Timer.startCPUTimer ();

31 val CPN'start = (#usr (Timer.checkCPUTimer CPN'timer));

32 val CPN'res = CPN'fun ()

33 val CPN'end = (#usr (Timer.checkCPUTimer CPN'timer))

34 in (CPN'res,Time.toString (Time.�(CPN'end,CPN'start)))

35 end;

36

37 (� Print the con�guration (i .e . parameter values) �)
38 (� (int � int � bool) �> string �)
39 fun printcon�g (rcri , rcrr ,ua) = "p"^(mkst col'RCR c rcri)^"�"^

40 (mkst col 'RCR c rcrr)^"�"^(mkst col'Flag ua);

41

246

42 (� Set the stop options �)
43 OGSet.StopOptions fNodes = 1000000,Arcs= 0,Secs = 12�60�60,
44 Predicate = (fn => false)g;
45

46 (� Set the con�guration to be analysed �)
47 (� (int � int � int � int � bool) �> unit �)
48 fun setcurcon�g (rcri , rcrr ,ua) =

49 (RCRImaxC := rcri;

50 RCRRmaxC := rcrr;

51 UserAckC := ua);

52

53 (� Convert a list of integers to a string with each integer sepearated by spaces �)
54 (� int list �> string �)
55 fun printintlist (nil) = " "

56 j printintlist (x :: xs) =

57 (makestring(x)^" "^(printintlist xs));

58

59 (� For each transition return 1 if the transition is dead, otherwise 0 �)
60 (� (TI. TransInst list � TI.TransInst list) �> int �)
61 fun printdeadtis (all ,dead) =

62 let fun map2int a b = if mem a b then 1 else 0

63 in printintlist ((map (map2int dead) all))

64 end

65

66 (� NOTE: the function IsValidTerminal must have been de�ned previously �)
67 (� Return 1 if all dead markings are desired �)
68 (� Node list �> int �)
69 fun correctterminals (dm) =

70 if mem (map IsValidTerminal dm) false

71 then "0"

72 else "1";

Listing F.3 includes a function for performing state space analysis on one con�gu-

ration (called fullanalyse con�g()), and a function for applying fullanalyse con�g() to a

list of con�gurations (called fullanalyse con�gs()). A con�guration is given as a triple:

(RCRImax, RCRRmax, UserAck).

fullanalyse con�g() follows the steps:

1. the reference variables are set to the values for the con�guration (Line 15),

2. the state space and SCC graph are calculated (Lines 17 and 20).

3. the results are written to a log �le (Line 24),

4. the Design/CPN State Space Report is written to a �le (Line 40),

5. the state space is mapped to a FSA and the transitions and halt states written to

�les (Lines 42 and 43), and

6. the state space is deleted (Line 45).

247

Listing F.3: Standard ML code to analyse multiple con�gurations of the Revised TR-

Protocol

1 (�
2 � Performs state space analysis in Design/CPN of multiple con�gurations of

3 � the Transaction Protocol (ie batch analysis). setup�con�gs.sml must have

4 � been included previously .

5 �
6 � ACKNOWLEDGEMENT: The majority of these functions were written by Lars

7 � Kristensen (University of South Australia), or are at

8 � least based on ones that he wrote.

9 �)
10 (� Perform single pass (state space) of Transaction Protocol �)
11 (� (int � int � bool) �> unit �)
12 fun fullanalyse con�g con�g =

13 let

14 (� set the current con�guration �)
15 val = setcurcon�g con�g

16 (� calculate state space �)
17 val (,CPN'time) = timepro�le CalculateOccGraph;

18 val = writelog ((printcon�g con�g)^" "^CPN'time^" ");

19 (� calculate SCC graph �)
20 val = CalculateSccGraph();

21 (� write statistics to log �le �)
22 val allti = TI.All ;

23 val deadti = ListDeadTIs();

24 val = writelog (makestring(NoOfNodes())^" "

25 ^makestring(NoOfArcs())^" "

26 ^makestring(NoOfSecs())^" "

27 ^makestring(SccNoOfNodes())^" "

28 ^makestring(SccNoOfArcs())^" "

29 ^makestring(SccNoOfSecs())^" "

30 ^makestring(length(ListDeadMarkings()))^" "

31 ^ correctterminals (ListDeadMarkings())^" "

32 ^makestring(length(ListDeadTIs()))^" "

33 ^makestring(UpperInteger(Mark.R LISTEN'InitToResp 1))^" "

34 ^makestring(UpperInteger(Mark.R LISTEN'RespToInit 1))^" "

35 ^ printdeadtis (allti , deadti)^"nn");
36 (� write Design/CPN OG Report, FSM transitions and halts to �les �)
37 val report�le = (printcon�g con�g)^"ogreport . txt";

38 val trans�le = (printcon�g con�g)^"trans . txt";

39 val halts�le = (printcon�g con�g)^"halts . txt";

40 val = OGSaveReport.DumpReport(report�le,

41 OGSaveReport.Report(true,true,true , false , true , true , false , false));

42 val = og2fsmtrans ArcToFSM trans�le;

43 val = og2fsmhalts FindHalts halts�le ;

44 (� delete state space so that next one can be calculated �)
45 val = DeleteOccGraph ();

46 in ()

47 end;

48

49 (� Calculate state spaces for set of con�gurations given as a list �)
50 (� (int � int � bool) list �> unit �)

248

51 fun fullanalyse con�gs con�gs =

52 (app fullanalyse con�g con�gs)

53 handle CPN'e => (writelog

54 ("FATAL ERROR: exception: "^(exnName CPN'e)^"nn"));

When multiple con�gurations are analysed using the sweep-line method, the functions

in Listing F.4 are used to apply the sweep-line analysis of one con�guration to a list of

con�gurations.

Listing F.4: Standard ML code to analyse multiple con�gurations of the Revised TR-

Protocol using the sweep-line method

1 (� Apply sweep�line analysis on set of con�gurations (no properties) �)
2 (� (int � int � bool) list �> bool �> int �> int �> unit �)
3 fun sweepanalyse con�gs con�gs store arcs gcnodelimit globaltimelimit =

4 (CPN'storearcs := store arcs ;

5 app (sweepanalyse con�g (gcnodelimit , globaltimelimit)) con�gs)

6 handle CPN'e => (writelog

7 ("FATAL ERROR: exception: "^(exnName CPN'e)^"nn"));
8

9 (� Apply sweep�line analysis on set of con�gurations (with properties) �)
10 (� (int � int � bool) list �> bool �> int �> int �> unit �)
11 fun sweepproperties con�gs con�gs store arcs gcnodelimit globaltimelimit =

12 (CPN'storearcs := store arcs ;

13 app (sweep properties (gcnodelimit , globaltimelimit)) con�gs)

14 handle CPN'e => (writelog

15 ("FATAL ERROR: exception: "^(exnName CPN'e)^"nn"));

F.2 Minimizing the FSA and Collecting Statistics

Once the state spaces have been calculated for each con�guration, their FSAs must be

minimized and the languages compared to the TR-Service language. Several scripts have

been written so this language analysis can be performed in a batch. The process followed

is:

1. Copy �les for each con�guration (ogreport.txt, trans.txt, halts.txt) into sub-

directories (cpconfigs.sh, Listing F.5).

2. Minimize the FSA and compare the Revised TR-Protocol language with the TR-

Service language for each con�guration (minconfig.sh, Listing F.6). (Note that

the command minogosi executes the code in Listing A.2.)

3. Collect statistics on FSAs and languages (allstats.sh, Listing F.7).

4. Check if there are any con�gurations which have a language di�erent from the

TR-Service language (checkdiff.sh, Listing F.8).

249

Listing F.9 gives the awk scripts that collect statistics on the languages (i.e. the �les

langstats.awk, countnip.awk and countnis.awk).

Listing F.5: Shell script to copy saved �les to subdirectories

1 # Copy all trans , halts and ogreport �les generated by Design/CPN from the

2 # current directory into a set of subdirectories (one for con�guration).

3 #

4 # Usage: cpcon�gs resultsdir listcon�gs

5 # resultsdir � directory name for putting all results (must not already exist)

6 # listcon�gs � �le listing all con�gurations in the format of for example

7 # 1�1�F on every line

8 #

9 # check �rst parameter is desired directory

10 if test $1

11 then s=$1'/p';

12 else echo 'Usage: cpcon�gs resultsdir listcon�gs '; exit ;

13 �

14 # check second parameter is list of con�gurations

15 if test $2

16 then listcon�gs =$2;

17 else echo 'Usage: cpcon�gs resultsdir listcon�gs '; exit ;

18 �

19 mkdir $1

20 # for every con�guration copy �les to its own directory

21 for i in ` cat $listcon�gs `

22 do

23 mkdir si ;

24 cp 'p' $i ' ogreport . txt ' si '/ogreport . txt ';

25 cp 'p' $i ' trans . txt ' si '/ trans . txt ';

26 cp 'p' $i ' halts . txt ' si '/ halts . txt ';

27 done

Listing F.6: Shell script to minimize all con�gurations of the Revised TR-Protocol

1 # Applies minogosi (the script for performing language analysis with FSM)

2 # to all con�gurations listed in listcon�gs . txt

3 # Usage: mincon�gs listcon�gs

4 # listcon�gs � �le listing all con�gurations in the format of for example

5 # 1�1�F on every line

6 if test $1

7 then listcon�gs =$1;

8 else echo 'Usage: mincon�gs listcon�gs '; exit ;

9 �

10 pathawk='../'

11 for i in ` cat $listcon�gs `

12 do

13 if test �d 'p' $i

14 then

15 tt=`basename $i �T`
16 if test �d 'p'$tt'�T' # UserAck On

17 then

18 cd 'p' $i ;

250

19 if test �e trans . txt

20 then minogosi trans . txt halts . txt on

21 gawk �f $pathawk'langstats.awk' lang. txt >> fsmstats.txt

22 gawk �f $pathawk'countnis.awk' di�ang�service . txt >> fsmstats.txt

23 gawk �f $pathawk'countnip.awk' di�ang�protocol. txt >> fsmstats.txt

24 else echo

25 � ;

26 cd ..;

27 else # UserAck O�

28 cd 'p' $i ;

29 if test �e trans . txt

30 then minogosi trans . txt halts . txt o�

31 gawk �f $pathawk'langstats.awk' lang. txt >> fsmstats.txt

32 gawk �f $pathawk'countnis.awk' di�ang�service . txt >> fsmstats.txt

33 gawk �f $pathawk'countnip.awk' di�ang�protocol. txt >> fsmstats.txt

34 else echo

35 � ;

36 cd ..;

37 � ;

38 else

39 echo;

40 �

41 done

Listing F.7: Shell script to collect FSM statistics from all con�gurations

1 # Collect all the fsm statistics for each con�guration and write to a

2 # single �le

3 # Usage: allstats .sh

4 total ='../ allstats . txt '

5 for i in ` cat listcon�gs . txt `

6 do

7 cd 'p' $i

8 if test �e fsmstats . txt ;

9 then

10 echo 'p' $i > name.txt

11 cat name.txt >> $total

12 cat fsmstats . txt >> $total

13 rm name.txt

14 cd ..

15 else

16 cd ..

17 � ;

18 done

Listing F.8: Shell script to test for di�erences between all con�gurations of the Revised

TR-Protocol and the TR-Service

1 # Test all con�gurations if NIP or NIS are greater than 0 ie di�erences

2 # in languages

3 # Usage: checkdi� .sh

4 for i in ` cat listcon�gs . txt `

5 do

251

6 cd 'p' $i

7 if test �e di�ang�service . txt ;

8 then

9 if test �s di�ang �service . txt

10 then

11 echo $i is incorrect

12 cd ..;

13 else

14 cd ..

15 � ;

16 else

17 cd ..

18 � ;

19 done

Listing F.9: Awk scripts to count number of sequences and the maximum and minimum

lengths for a language (langstats.awk) and the number of sequences not in the Revised

TR-Protocol/TR-Service language (countnip.awk/countnis.awk)

1 # langstats .awk

2 BEGIN fmin=100g
3 f if (length($0)<min) min=length($0)g
4 f if (length($0)>max) max=length($0)g
5 END fprint ("LANG: ", NR, max/6, min/6)g
6

7 # countnip.awk

8 END fprint ("NIP : ", NR)g
9

10 # countnis.awk

11 END fprint ("NIS : ", NR)g

252

Appendix G

Evaluation of the Tools and

Techniques Used

The major part of the modelling and analysis reported in this thesis has been under-

taken using two tools: Design/CPN [109] and FSM [4]. The CPN models were created,

simulated and analysed in Design/CPN. A prototype implementation of the sweep-line

method was used [30], and to perform analysis of multiple con�gurations at once, extra

Standard ML code was required (see Appendix F). FSM was used for minimizing the

FSAs and comparing languages. This appendix provides some comments on the appli-

cability of these tools to the Wireless Transaction Protocol. The purpose is to be an

informative guide to other potential or existing users, and also a \wish-list" to be passed

on to developers.

G.1 Coloured Petri Nets and Design/CPN

G.1.1 Limitations and DiÆculties

Version Control

Many iterations of the veri�cation process were applied to the Wireless Transaction Pro-

tocol (due to a variety of reasons). As a result, a large number of changes were made to

the CPN models. EÆciently keeping track of these changes was diÆcult. A signi�cant

factor to this is the need for discipline in applying and recording the changes. However,

support within Design/CPN for version control would also simplify the process. This may

come in the form of a version control system built into Design/CPN, or for Design/CPN

to make use of external version control systems. The important aspects to be considered

are:

� Saving dates, authors, comments and version information with the CPN models.

253

� Saving incremental changes (deltas) to the CPN models.

� Including new graphical features so that the changes can be shown (e.g. highlighting

the di�erences between versions, for both display and printing).

� Analysis techniques that take advantage of the incremental nature of the CPN

model.

Standard ML

Standard ML is, in most cases, a suitable language for the inscriptions in CPNs. However,

we experienced several problems with the constructs that limit the maintainability of

our TR-Protocol CPN. For example, the header �elds of the PDUs were chosen to be

modelled as records rather than products because of the clarity records give in the model

(see Section 7.5). But as several PDUs contain the same header �elds, there are redundant

�elds in the records. A more suitable approach would be to de�ne a record of the common

�elds, and then create the PDU headers from a composition of the common �elds and

other speci�c �elds. As far as we are aware, this was not possible using Standard ML.

Integration of Tools

To facilitate the rapid development of models and generation of results, further integration

of the tools used is desirable. Graphical support for analysis of multiple state spaces and

the sweep-line method should be included in Design/CPN. Further development of the

library to map the Design/CPN state space to a text �le suitable for FSM is also required.

With the performance evaluation [101] and code generation [113] features of Design/CPN,

these enhancements will be a good step towards a suite of tools supporting the major

activities in the protocol engineering methodology (and systems engineering in general).

Generation of Time Sequence Diagrams and State Tables

The time sequence diagrams and state tables in this thesis have been created manually.

Automatically generating these from the model and state space is desirable. Design/CPN

includes a library for automatically drawing message sequence charts (similar to TSDs)

for occurrence sequences [161], but, in its current form, it is inadequate for expressing

the level of detail required for the TR-Service and TR-Protocol TSDs. As the state

table entries almost have a one-to-one mapping to transitions, a library to transfer the

information between the two representations would also be useful. Fully or partially

automating these tasks would reduce the possibility of human errors and save signi�cant

time.

254

G.1.2 Evaluation of State Space Analysis

State spaces of more than 50 con�gurations of the Revised TR-Protocol were calculated

in Design/CPN. The largest state space calculated contained 343521 nodes and 1353167

arcs. This took over 4 hours of CPU time. This equates to an average calculation rate

of 21 nodes per second, as opposed to rates of more than 100 nodes per second when the

number of nodes is less than 50000. Figure G.1 shows how the calculation rate decreases

as the number of nodes to calculate increases.

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000 250000 300000 350000

N
od

es
 c

al
cu

la
te

d
pe

r
se

co
nd

Number of nodes

Figure G.1: Relationship between node calculation rate and total number of nodes when

using ordinary state space analysis

For the computer used for analysis (see Section 8.2.3), the state space of Con�guration

4-3-F could not be calculated. From the results for this con�guration and Figure G.1,

the limit for Design/CPN is estimated to be approximately 400000 nodes.

G.1.3 Evaluation of the Sweep-Line Method

The sweep-line method has been applied to few case studies [31]. Although the focus of

this thesis is verifying the Wireless Transaction Protocol, and the sweep-line method has

only been used to analyse several con�gurations in Chapter 9, a considerable amount of

e�ort has been put into obtaining results using the sweep-line method. These results are

used as a preliminary evaluation of the method.

The results using the sweep-line method are compared against the number of nodes

and generation time for when ordinary state space analysis is used. The con�gurations

analysed using ordinary state space analysis are grouped into �ve categories based on

the number of nodes (N). The averages of each category are then given. The categories

are: Very Small (N < 1000); Small (1000 � N < 10000); Medium (10000 � N < 50000);

255

Large (50000 � N < 150000); and Very Large (N � 150000). Four di�erent limits for

garbage collection are used: 100 nodes, 1000 nodes, 10000 nodes and 50000 nodes. The

on-the-y veri�cation of properties is not used in the sweep-line method, only calculation

of nodes is performed. This is because the time to query (or prove) the properties using

ordinary state space analysis is not included in the measurements. Further investigation

of the impact of the properties on the memory and calculation times should be made.

The graph in Figure G.2 shows the average of the maximum number of nodes stored

in memory when the sweep-line method is applied. The memory is relative to that used

when the same con�guration was calculated using ordinary state space analysis (i.e. 100).

There is no advantage of using the sweep-line method when the garbage collection rate is

greater than the size of the full state space. For the Large and Very Large state spaces,

only 65{70% of the total number of nodes need to be stored when the garbage collection

rate is less than 10000 nodes. When the garbage collection rate is at 50000 nodes, the

reduction is slightly lower.

0

120

100

80

60

40

20

LargeMediumSmall Very LargeVery Small

100

1000

10000

50000

Garbage Collection

State Space Categories

to
 o

rd
in

ar
y

st
at

e
sp

ac
e

P
er

ce
n

ta
g

e
o

f
n

o
d

es
 s

to
re

d
 r

el
at

iv
e

Figure G.2: Number of nodes stored in memory using sweep-line, relative to ordinary

state space analysis

Figure G.3 shows the average calculation time using the sweep-line method. Again,

the calculation time is relative to the calculation time when ordinary state space analysis

is used. There are signi�cant savings in time when using the sweep-line method, especially

for Very Large state spaces (approximately 50%).

A trade-o� must be made between the calculation time and nodes stored when choos-

ing a garbage collection rate. From Figures G.2 and G.3, a reasonable trade-o� is to

perform garbage collection every 10000 nodes, where 64% of the total number of nodes

need to be stored, and only 47% of the time taken to calculate the full state space is

256

0

120

100

80

60

40

20

LargeMediumSmall Very LargeVery Small

100

1000

10000

50000

Garbage Collection

State Space Categories

P
er

ce
n

ta
g

e
o

f
ti

m
e

u
se

d
 r

el
at

iv
e

to
 o

rd
in

ar
y

st
at

e
sp

ac
e

Figure G.3: Calculation time using sweep-line analysis, relative to ordinary state space

analysis

required (for Very Large state spaces).

In this thesis, the sweep-line method has been used to obtain the size of state spaces

when RCRImax is greater than 7 while RCRRmax=0 and UserAck=T. Figure G.4 plots

the maximum number of nodes stored when both ordinary (solid line) and sweep-line

analysis (dashed line) are used for di�erent values of RCRImax (the state spaces are not

calculated using ordinary analysis|the number of nodes are counted when performing

the sweep-line analysis). The �gure shows that, although the sweep-line method provides

a signi�cant reduction for larger state spaces, the number of nodes stored continues to

increase rapidly with RCRImax. Therefore, the sweep-line method can only provide

limited assistance in tackling state explosion for the Revised TR-Protocol CPN.

The progress measure used to perform sweep-line analysis took advantage of the

monotonically increasing re-transmission counters, RCRImax and RCRRmax (see Sec-

tion 9.3.1). To gain further reductions using sweep-line analysis, other progress measures

may be investigated. One approach may be to also include the state names in the progress

measure, as each TR-PE traverses through a set of major states.

On inspection of the full state space of Con�guration 4-4-T, it was found that 87% of

all nodes had a progress measure where either one or both of the TR-PEs had completed

the transaction (i.e. returned to the NULL or LISTEN state). Including the state names

is likely to provide further reduction in the number of nodes stored, especially for groups

of nodes where only one TR-PE has completed the transaction. However, the bottleneck

for the reduction occurs when both TR-PEs have completed the transaction. 33% of the

total nodes have the same progress measure in this case. This is because there are a large

257

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 2 4 6 8 10

N
od

es

RCRImax

Figure G.4: Maximum number of nodes to be stored when using ordinary state space

(solid line) and sweep-line analysis (dashed line) as RCRImax increases

number of terminal markings, and also transitions RcvAck Tve (I NULL page, Figure E.5)

and RcvInvoke Abo (R LISTEN page, Figure E.10) can occur multiple times. To overcome

this bottleneck, the nodes when both TR-PEs have completed must be sub-divided so

they obtain di�erent progress measures. This is an area for further investigation (see

Chapter 10).

G.2 Automata Theory and FSM

G.2.1 Limitations and DiÆculties

As discussed in Section G.1.1, further integration (possibly via a common format) of

Design/CPN and FSM would be bene�cial. Also, di�erent (and more user-friendly) tech-

niques for representing the languages (e.g. as regular expressions) are necessary to cope

with larger languages. Apart from this, FSM has been a capable tool in the veri�cation

methodology. In the long term, it would be desirable for new algorithms to be developed

and implemented to minimize much larger FSAs. Intelligent algorithms for drawing FSAs

(i.e. taking into account the speci�c requirements of the user) would also be useful.

G.2.2 Evaluation of the Language Analysis

Although algorithms for removing empty transitions from FSAs and calculating the min-

imized FSA are exponential in time [9], FSM has coped with the largest FSAs with ease

(relative to the time taken to generate the state space in Design/CPN). For example, the

state space for Con�guration 4-3-F took approximately 4.5 hours of CPU time to calcu-

258

late, while the language analysis took less than 90 seconds (measured in actual time, not

CPU time). Further evaluation of language analysis as part of the protocol engineering

methodology would require their application to other case studies that push the tools

and techniques to their limit.

259

Appendix H

Publications

H.1 Journal Articles

S. Gordon and J. Billington. Analysing a missile simulator using Coloured Petri nets.

International Journal on Software Tools for Technology Transfer, 2(2):144{159, December

1998.

Abstract. The operation of a distributed missile engagement simulator is modelled and

analysed. The simulator is developed as a testing platform for missile guidance and

control algorithms. The simulator uses concurrency and remote execution to enhance

performance. Two Coloured Petri net models are created, simulated and analysed: an

abstract model that speci�es the service provided by the simulator to the graphical user

interface and user, and a detailed model that describes the functionality of the simulator.

It is shown that there are no deadlocks when communicating between components of the

simulator and the simulator operates correctly. Also, for a set of input parameters, the

detailed model provides the service described by the abstract model.

H.2 Conference Papers

S. Gordon, L. M. Kristensen and J. Billington. An approach to generalising the state

space of a distributed missile simulator. In Proceedings of the Eleventh Annual Interna-

tional Symposium of the International Council on Systems Engineering (INCOSE'2001),

Melbourne, Australia, 1{5 July 2001. Recipient of a Best Student Paper Award.

Abstract. Formal methods can be used to verify re�nements made in the design stages

of systems. For example, the state space of a detailed design model can be compared

with that of an abstract design model to see if it preserves sequences of events. Problems

with state space analysis (state explosion, �xed initial states) make this diÆcult for real

applications. In this paper we outline an approach for obtaining a generalised state space

260

of a distributed missile simulator. The original state space has a repetitive structure.

Our aim is to prove that for any initial state, the system will eventually halt, after which

we can de�ne a compact graphical representation of the state space, that is independent

of the initial state.

S. Gordon and J. Billington. Analysing the WAP Class 2 Wireless Transaction Protocol

using Coloured Petri nets. In M. Nielson and D. Simpson, editors, Proceedings of the 21st

International Conference on Application and Theory of Petri Nets (PN2000), pages 207{

226, Aarhus, Denmark, 26{30 June 2000. Volume 1825 of Lecture Notes in Computer

Science, Berlin, Heidelberg: Springer-Verlag. ISBN: 3-540-67693-7.

Abstract. Coloured Petri nets (CPNs) are used to specify and analyse the Class 2

Wireless Transaction Protocol (WTP). The protocol provides a reliable request/response

service to the Session layer in the Wireless Application Protocol (WAP) architecture.

When only a single transaction is considered occurrence graph and language analysis

reveals 3 inconsistencies between the protocol and service speci�cation: (1) the initiator

user can receive two TR-Invoke.cnf primitives; (2) turning User Acknowledgment on

doesn't always provide the User Acknowledgment service; and (3) a transaction can be

aborted without the responder user being noti�ed. Based on the modelling and analysis,

changes to WTP have been recommended to the WAP ForumSM.

S. Gordon and J. Billington. Modelling the WAP Transaction Service using Coloured

Petri Nets. In H. V. Leong, W. -C. Lee, B. Li, and L. Yin, editors, Proceedings of the

First International Conference on Mobile Data Access (MDA99), pages 109{118, Hong

Kong, China, 16{17 December 1999. Volume 1748 of Lecture Notes in Computer Science,

Berlin, Heidelberg: Springer-Verlag. ISBN: 3-540-66878-0.

Abstract. The Wireless Application Protocol (WAP) is an architecture designed to sup-

port the provision of wireless Internet services to mobile users with hand-held devices.

The Wireless Transaction Protocol is a layer of WAP that provides a reliable request/re-

sponse service suited for Web applications. In this paper Coloured Petri nets are used to

model and generate the possible primitive sequences of the request/response Transaction

Service. From the results we conclude that the service speci�cation lacks an adequate

description of what constitutes the end of a transaction. No other de�ciencies were found

in the Transaction Service.

261

S. Gordon and J. Billington. Middleware services over satellite networks: A survey of

issues. In Proceedings of the 8th International Aerospace Congress (IAC'99) incorporat-

ing the 12th National Space Engineering Symposium (NSES'99), NS5.20 on CD-ROM,

Adelaide, Australia, 13{15 September 1999.

Abstract. Middleware promises seamless integration of heterogeneous networks and

computing/telecommunications environments by providing distributed services to user

applications. With Low Earth Orbit satellite networks being deployed as communica-

tions infrastructure, it is important that middleware can operate eÆciently over these

networks. For applications to have good performance, eÆcient and robust communica-

tions between middleware objects is mandatory. Many protocols have been proposed to

provide mobility, and to improve data transport over the restrictions imposed by satellite

links. This paper provides a survey of the issues and potential solutions, with the aim of

stimulating further research in this developing area.

S. Gordon and J. Billington. Modelling and analysis of an air-to-air missile engagement

simulator using Coloured Petri nets. In E. O. Tuck and J. A. K. Stott, editors, Proceedings

of the Third Biennial Engineering Mathematics and Applications Conference (EMAC'98),

pages 225{228, Adelaide, Australia, 13{16 July 1998. Institution of Engineers, Australia.

ISBN: 185825-686-X.

Abstract. Computer simulations of a missile engaging its target provide an environment

for testing the guidance and control functions of the missile. The accuracy of the tests

depends on the detail of the models used and correct communication between the mod-

els. This paper addresses the problem of analysing the communication protocols for an

Integrated Weapons Simulator (IWS). IWS comprises �ve components which all exhibit

some degree of concurrency via multi-threading and remote execution. Coloured Petri

nets, a formal technique, are used to model communication between components. It is

shown no deadlocks are present in the communication protocols.

S. Gordon and J. Billington. Applying Coloured Petri nets and Design/CPN to an air-

to-air missile simulator. In K. Jensen, editor, Proceedings of the Workshop on Practical

Use of Coloured Petri Nets and Design/CPN (CPN'98), pages 1{14, Aarhus, Denmark,

10{12 June 1998. Computer Science Department, Aarhus University. DAIMI PB-532.

ISSN: 0105-8517.

Abstract. In this paper the communication mechanisms of a missile engagement sim-

ulator are modelled and analysed. The simulator is developed as a testing platform for

262

missile guidance and control algorithms. The simulation uses concurrency and remote

execution concepts to enhance performance. Coloured Petri nets are a well suited formal

approach for modelling and analysis of these concepts. Design/CPN is used to create and

analyse the model of the simulation. A new requirement of the graphical user interface

is identi�ed for the simulation to operate successfully. The communication mechanisms

are without deadlocks and are suitable for the simulator.

H.3 Other Publications

S. Gordon and J. Billington. Inconsistencies in the Wireless Transaction Protocol. WAP

Forum Input Document. Submitted to the WAP Forum, 19 November 1999.

Executive Summary. Formal analysis of the WAP Class 2 Wireless Transaction Pro-

tocol has revealed several inconsistencies in the speci�cation. These are explained, and

where possible, changes to the speci�cation are proposed to improve the protocol. The

inconsistencies are:

1. The counter RCR may be incremented to a value that is greater than RCR MAX.

2. Two TR-Invoke.cnf primitives can be delivered to the Initiator user (within the

context of one transaction).

3. The TR-Result.req primitive may immediately follow a TR-Invoke.ind primitive at

the Responder user when User Acknowledgment is on.

4. A transaction may be aborted without the Responder user being noti�ed.

5. The semantics of \Abort transaction" in the state tables is not de�ned.

Changes to the state tables are proposed to remedy the �rst 4 problems. A de�nition is

required in the text for the �nal problem. Typographical errors in the state tables are

also pointed out.

263

