
Hindawi Publishing Corporation
International Journal of Vehicular Technology
Volume 2010, Article ID 238518, 23 pages
doi:10.1155/2010/238518

Research Article

Verification of the FlexRay Transport Protocol for
AUTOSAR In-Vehicle Communications

Steven Gordon and San Choosang

Sirindhorn International Institute of Technology, Thammasat University, 131 Moo 5, Tiwanont Road, Muang,
Pathumthani 12000, Thailand

Correspondence should be addressed to Steven Gordon, steve@siit.tu.ac.th

Received 15 July 2010; Revised 18 October 2010; Accepted 3 November 2010

Academic Editor: Martin Reisslein

Copyright © 2010 S. Gordon and S. Choosang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The FlexRay Transport Protocol (FrTp) is designed to support reliable and efficient communication between various computers
embedded in vehicles. It uses a standardised FlexRay communication bus and introduces a go-back-N style retransmission
algorithm. A formal modelling language, Coloured Petri nets (CPN), has been applied to verify the protocol design. Separate
CPN models of the FrTp service and protocol are developed and with state space analysis-used to prove for selected configurations
that FrTp is deadlock-free and conforms to the service specification when transferring a single-protocol data unit from sender to
receiver. In addition, closed-form solutions relating the state space size, retransmission limit, and number of segments are found,
giving increased confidence that FrTp is error-free, even for configurations where the state explosion problem arises.

1. Introduction

Vehicles today may contain nearly 100 embedded computers,
or Electronic Control Units (ECUs), that together control the
engine, airbags, suspension, seats, as well as provide infor-
mation to other on-board devices and users (e.g., telephone
and entertainment systems) [1]. The increasing number and
complexity of applications using ECUs has contributed to the
development of new in-vehicle communication systems, as
well as techniques to simplify the development of applica-
tions utilising multiple ECUs. For the former, FlexRay [2] is
a potential replacement for Controller Area Network (CAN),
a bus for inter-ECU communication in many vehicles today.
For the latter, automobile manufacturers are developing
the Automotive Open Systems Architecture (AUTOSAR) [3]
to allow software components to communicate irrespective
of the ECU or bus technology (FlexRay, CAN) that is in
use. A specific part of AUTOSAR is the FlexRay Transport
Protocol (FrTp) [4], which overcomes a limitation of the
FlexRay bus [5] in allowing software components to send
long messages with high reliability. As future in-vehicle
and ITS applications will depend on FrTp for reliable
communication, it is important that the design is proved

to be free of significant errors. Any unexpected behaviour
in vehicle communication systems may lead to expensive
bug fixes, recalls, or even fatalities. Formal methods are
well suited for the specification and analysis of such safety-
critical systems. Coloured Petri nets (CPNs) [6] are a formal
modelling language with a graphical notation to ease model
development, backed by a mathematical definition that
supports automatic proof of properties using state space
exploration. This paper applies CPNs to present the first
formal verification of the AUTOSAR FlexRay Transport
Protocol. Key contributions are the following.

(1) Formal specification of both FrTp protocol and
service using Coloured Petri nets. In this paper
the CPN model is used for formal analysis of the
protocol. However, in future work the CPN model
could also be used in other protocol development
tasks. For example, with minor modifications to the
CPN model, performance analysis of FrTp could be
performed or source code could be generated.

(2) Definition of the key desired properties of FrTp, in
particular the set of expected terminal markings and
the desired service language.
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(3) Proof that for selected configurations, when deliv-
ering a single-protocol data unit from sender to
receiver FrTp is deadlock-free and satisfies the desired
service language. Verification of FrTp for these
configurations provides confidence that the protocol
specification does not contain functional errors.

(4) Closed-form solutions for the size of the FrTp state
space as a function of certain protocol parameters
(e.g., retransmission and block size limits). The
observed trends in the state space size provide
increased confidence that the desired properties hold
for configurations not yet analysed, thereby avoiding
limitations of state space analysis.

An earlier version of the FrTp protocol CPN and
analysis results was presented in [7]. This paper presents
an updated, more detailed CPN of the FrTp protocol, and
also presents a CPN of the FrTp service (which was not in
[7]). This paper also includes additional analysis results, in
particular verifying the protocol operation for a larger set
of configurations and showing the relationship between state
space size and protocol parameters.

This paper is structured as follows. Section 2 provides
background material on AUTOSAR, FlexRay and protocol
verification, and reviews the state of the art in this area.
Section 3 provides details of the FlexRay Transport Protocol
features. Section 4 introduces CPNs. Section 5 presents our
CPN model of the service and protocol. Analysis results
proving the correctness of the protocol, as well as other
insights, are given in Section 6, followed by concluding
remarks in Section 7.

2. Background and Related Work

2.1. AUTOSAR and FlexRay. Future in-vehicle software
applications will be implemented as multiple components
coordinating with each other to achieve the desired software
functionality. Components may be running on different
ECUs, interact with various sensors and actuators, and
communicate via one or more buses. AUTOSAR [3] is
an architecture that aims to simplify the development
of component-based software applications by hiding the
complexities of the ECU’s and communication bus from
components.

As an example, consider Figure 1 which shows an
application comprised of four components distributed across
three ECUs. As part of the AUTOSAR architecture, the Run
Time Environment (RTE) provides an API to the software
components for communicating and using the underlying
operating system and hardware. The RTE provides the
ability to startup/shutdown software components, and hides
the ECU details from components. Below the RTE are
a set of AUTOSAR services, and corresponding hardware
abstractions and drivers, that will be commonly used by
multiple software applications, thereby avoiding the need to
be implemented in each component. These include services
for memory management, communications, and I/O, as
well as device-specific drivers for the microcontroller and

sensors/actuators. The microcontrollers of each ECU then
communicate via one of the possible bus technologies.

The focus of this paper is on the communication
mechanisms in AUTOSAR, especially when FlexRay is the
chosen bus standard. The detailed AUTOSAR layers in this
case are shown in Figure 2. Data to be sent between software
components is delivered by the AUTOSAR Communication
(COM) layer to the PDU Router. AUTOSAR COM provides
a communication API for applications and is based upon
OSEK/VDX COM [8]. The PDU Router determines the
technique to transport data between software components,
for example, selecting from the different bus standards
(FlexRay, CAN), and based on the service required (reliable
versus unreliable).

If FlexRay is selected by the PDU Router, then the
FlexRay Transport Protocol (FrTp) may be used to provide
reliability and efficiency features not offered by the FlexRay
bus. Below the communication services is the FlexRay
interface which provides an abstract interface to the FlexRay
drivers and FlexRay controller (which may be implemented
internal or external to the microcontroller). FlexRay [2]
defines a physical and data link layer protocol for distributed
bus-based communication between a set of controllers. The
physical layer allows each controller to connect via one or
two channels at data rates of 10 Mb/s. The data link layer uses
TDMA allowing each controller to transmit 255 bytes of data
in a frame per time slot.

The focus of this paper is on the FlexRay Trans-
port Protocol within the AUTOSAR architecture. Many
of the blocks in AUTOSAR are based on existing stan-
dards/protocols/software and have been used/tested exten-
sively. FrTp is in fact based on an existing CAN/ISO transport
protocol [9]. However several significant extensions are
introduced which warrants in-depth, formal analysis of its
operation.

2.2. Protocol Verification. Formal methods can be used for
the specification and analysis of communication protocols to
provide insights into the system behaviour, early detection
of errors in the design process, remove ambiguities from
specifications and to prove correctness of the protocol [10].
Formal methods can be applied during various phases of a
protocol design: in this paper we concentrate on protocol
verification [11, 12], which involves proving the protocol
satisfies a set of requirements or desired properties. Two sets
of properties of the protocol are considered.

Firstly, there are dynamic properties of a protocol that
are expected from its correct operation. Common desired
properties include the absence of deadlocks and livelocks
in the protocol. Other properties may be specific to the
protocol, such as the number of messages stored in a receive
buffer never goes above a predefined limit. With a formal,
executable model of a protocol, state space analysis is well-
suited to automatically proving a desired set of protocol
properties.

The second set of properties of interest are the interac-
tions between the protocol and the user, where the user may
be another protocol, a software component or (less likely)
a human. The users requirements of the protocol, or service
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Figure 1: Structure of ECU’s in AUTOSAR.

Software components

Run time environment

AUTOSAR
com

Diagnostic
comm.

manager

PDU router

FlexRay
transport protocol

FlexRay interface

Controller driver
for FlexRay

FlexRay

Se
rv

ic
es

H
W

ab
st

.
D

ri
ve

r

Figure 2: AUTOSAR FlexRay layered architecture.

specification, should define the set of possible interactions
between user and protocol. The interactions are referred
to as service primitives and the set of possible orderings of
service primitives is the service language. Protocol verification
aims to prove that the protocol faithfully implements the
desired service specification. Again, with a formal model of
a protocol, as well as the desired service language, state space
analysis combined with language theory can be applied to
verify that the sequence of service primitives allowed by the
protocol faithfully refines that of the service language.

In this paper Coloured Petri nets [6] are used to model
FrTp, as well as the FrTp service specification. CPNs are
selected as the formal modelling language as they: sup-
port features for modelling protocols, that is, concurrency,
nondeterminism; allow for modelling at different levels of
abstraction, that is, service and protocol; have a graphical
notation, simplifying the validation of the model; and have

computer tool support for modelling and state space analysis
(CPN Tools [13]).

2.3. Related Work. The development of an automotive
embedded system consists of multiple phases, ranging from
requirements specification through to conformance testing.
Reference [14] identifies the importance of system level
models and verification of functional and nonfunctional
properties during the development of automotive embedded
systems, including AUTOSAR. An example of validating
requirements are met across all phases in AUTOSAR
development is shown in [15]. Recently, researchers have
addressed specific development phases for AUTOSAR.

As many AUTOSAR applications will be time-critical,
verifying that timing constraints are met is important.
Reference [16] describes a case study of applying the TIMMO
methodology and the related modelling language TADL to
analyse the timing of an AUTOSAR steer-by-wire applica-
tion using the FlexRay bus. The authors demonstrate that
TIMMO/TADL is well suited to the AUTOSAR development
process and can be used to verify solutions meet timing
requirements. Reference [17] analyses the AUTOSAR oper-
ating system for the cases when faulty designs, in particular
underestimation of Worst Case Execution Time (WCET),
leads to timing errors. The authors show the AUTOSAR
timing protection mechanisms achieve the goal of avoiding
propagation of faults, but in some cases is poor at reducing
the number of jobs missing deadlines. An approach for
containing timing errors in one AUTOSAR component so
that it does not impact on other components is presented
in [18]. A synchronization protocol is proposed to allow the
different components to access shared resources.

Generating code from system configuration information
and models can increase confidence that the resulting code
is error-free. Reference [19] shows how an executable RTE
can be generated from XML descriptor files for AUTOSAR.
Reference [20] presents a methodology for generating the
AUTOSAR services (below the RTE), using the FlexRay
communication services as an example.
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Conformance testing is another phase in ensuring a
design/implementation meets requirements. Reference [21]
extends TTCN-3 with additional real-time features to allow
testing of specific timing scenarios within AUTOSAR. Refer-
ence [22] presents an example of testing AUTOSAR software
generated from a model-based design.

Although there has been no formal analysis of the
communication protocols used in AUTOSAR, there exists a
wide body of paper in protocol verification in general (see,
e.g., [10] and the references within). FrTp uses a go-back-N
error-control mechanism: numerous verification studies of
go-back-N [23–25] and the simpler stop-and-wait protocol
[26–29] have been conducted. One of the most recent,
and closest to our work is [29], which presents extensive
verification of a class of stop-and-wait protocols using CPNs.
From state space and language analysis, properties are proved
for selected configurations of stop-and-wait. Then, through
detailed inspection of the CPN, the analysis is extended to
prove the properties for arbitrary parameter values. Our
work follows a similar approach, but differs in that we
consider a different, more complex protocol (go-back-N,
instead of stop-and-wait; modelling of features specific to
FlexRay/AUTOSAR) and include detailed modelling of the
FrTp interaction with the higher layer. Although we only
prove properties for specific parameter values (not arbitrary
values as in [29]), we do provide analysis that increases our
confidence that FrTp is error-free for all configurations. Note
also that although FrTp uses go-back-N principles, there
are substantial differences to the protocols analysed in [23–
25] (e.g., types of frames, interactions with higher layer and
parameters) such that independent verification is warranted
for FrTp.

Reference [30] presents a formal model of the CAN bus,
which can be used as an alternative to FlexRay in AUTOSAR.
A CPN model is created and used to measure throughput
and latency in a simple CAN network. However [30] is not
attempting formal verification of the protocol, nor focussing
on AUTOSAR or FlexRay.

3. FlexRay Transport Protocol in AUTOSAR

The FlexRay Transport Protocol (FrTp) provides both a
confirmed and unconfirmed communication service for
AUTOSAR applications that use a FlexRay bus. It is partly
based on ISO 15765-2 [9], a standard for unconfirmed
communication for diagnostic applications in a CAN-
based vehicle. In addition FrTp provides extra reliability
features (e.g., acknowledgements and retries) to offer con-
firmed communication. Segmentation and flow control are
also implemented to improve performance. The error/flow
control scheme is based on go-back-N. This paper, and
subsequent description, focusses on the confirmed service,
as it is substantially different from and more complex than
the existing ISO 15765-2 protocol. Only features relevant to
the modelling/analysis tasks are described in this section; for
a full treatment of FrTp see [4].

3.1. FrTp Service Specification. Application and/or diagnos-
tics data is sent via AUTOSAR COM or DCM to the PDU

Router. If required, the PDU Router delivers that data
to FrTp, which then transfers the data to the destination
ECU, PDU Router and eventually application. The service
provided by FrTp to the user (PDU Router) is informally
described in Section 5 of [4]. A set of service primitives
are defined, as shown in Figure 3. (In [4] each primitive is
prefixed with a layer name, e.g., FrTp Transmit. For brevity,
in Figure 3 and subsequent discussion we denote primitives
in italics and omit the layer name, e.g., Transmit.)

The key operations for data transfer are the following.

(1) Transmit primitive is called by PDU Router to initiate
data transmission at the sender.

(2) The FlexRay Interface (FrIf) is used to transmit that
data to the receiver FrTp.

(3) Upon successfully receiving the data, the receiver
passes that data to the PDU Router via RxIndication
primitive. In addition a confirmation is sent to the
sender and passed to the PDU Router as TxConfir-
mation with the successful flag set.

(4) Unsuccessful delivery of data results in no indication
to the receiver PDU Router, but a TxConfirmation
with unsuccessful flag set is delivered to sender PDU
Router.

Other primitives are used for optional features such as
cancelling a transmission.

Although [4] defines the set of service primitives, there is
no formal definition of the valid sequences of primitives. In
Section 5.1 we develop a formal model of the FrTp service,
then use it to generate the set of possible service primitive
sequences, that is, the service language.

3.2. FrTp Protocol Specification. The FrTp protocol specifica-
tion is given in Sections 7, 8, and 9 of [4]. Data that arrives
from the higher layer, which is referred to as a Protocol Data
Unit (PDU), can be sent using different methods with FrTp:

(1) unacknowledged segmented or unsegmented trans-
fer,

(2) acknowledged segmented or unsegmented transfer,
but no retries,

(3) acknowledged segmented or unsegmented transfer
with retries,

(4) unacknowledged segmented or unsegmented multi-
cast transfer.

The first method is identical to ISO 15765-2, while the
other three are new. This paper addresses only the unicast
acknowledged transfer (methods 2 and 3), leaving multicast
transfer for future work.

Different frame types are used in FrTp. All frames contain
the addresses of the sender and receiver. Frames that can be
sent from sender to receiver (all of which can contain data)
are the following.

Single Frame (SF). Used only when the PDU is small
enough to be carried inside a single FlexRay frame, that is,
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segmentation is not required. The header includes the length
of the PDU.

First Frame (FF). When the PDU must be segmented, this is
the first frame transmitted. The header includes the length of
the PDU.

Consecutive Frame (CF). When the PDU must be seg-
mented, all data, except that in the first frame, is sent in
CFs. The header includes a sequence number to indicate the
ordering of the CFs.

Frames that can be sent in the reverse direction (none of
which contain data) are the following.

Flow Control (FC). Used to control the sending rate. Sub-
types are: CTS to indicate the sender is clear to send; WAIT to
indicate the sender must wait; and OVERFLOW to indicate
the receiver has exhausted its buffer. The header includes the
block size: the maximum number of CFs that are allowed to
be transmitted before the next FC.

Acknowledgment (ACK). Used to acknowledge the current
status of the PDU transfer. Subtypes are: positive (PACK) to
indicate all data has been successfully received; and negative
(NACK) to indicate an error (and either a retransmission
should occur or the transfer should be aborted). The header
includes sequence number field to indicate the faulty CF (in
case of NACK).

An example of FrTp with segmented, acknowledged
transfer with retries is illustrated in Figure 4. The FF is
transmitted and upon receipt the receiver replies with a
FC frame indicating the sender is clear to send the next
frames. Included in the FC frame is the Block Size (BS) which
indicates the maximum number of CFs the sender is allowed
to send before waiting for the next Ack/CTS.

If a frame is lost or arrives with errors, the receiver
sends a NACK indicating the frame that is missing (all
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Figure 4: Example FrTp message sequence diagram.

frames contain a sequence number). Upon receiving the
NACK the sender must retransmit all frames sent but not
yet acknowledged. This is a go-back-N error/flow control
scheme. Once all data is received by the receiver (the total
data length is included in the First Frame), a PACK is sent
indicating the successful completion of data transfer.

4. Coloured Petri Nets

Coloured Petri nets [6] are a class of high-level nets that
extend the features of basic Petri nets. The formal definition
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of nonhierarchical CPNs (based on [6, Definition 4.3])
follows (In this paper hierarchical CPNs are used as they
make the graphical net easier to read. The definition of
hierarchical CPNs (see [6, Definition 6.1]) introduces three
new net elements to Definition 1. However for simplicity
we use the nonhierarchical definition as it is sufficient for
explaining the model and analysis. In any case, a hierarchical
CPN can be easily converted to a nonhierarchical CPN.).
Definitions 1 to 6 are based on Definitions 4.2, 4.3, 4.4, 9.6,
9.19, and 9.9 from [6], respectively. Definition 7 is based on
the definition in Section 2.3.2 of [31].

Definition 1. A nonhierarchical Coloured Petri Net is a nine-
tuple CPN = (P,T ,A,Σ,V ,C,G,E, I), where we find the
following.

(1) P is a finite set of places.

(2) T is a finite set of transitions T such that P ∩ T = ∅.

(3) A ⊆ P × T ∪ T × P is a set of directed arcs.

(4) Σ is a finite set of nonempty colour sets.

(5) V is a finite set of typed variables such that Type[v] ∈
Σ for all variables for all v ∈ V .

(6) C : P → Σ is a colour set function that assigns a colour
set to each place.

(7) G : T → EXPRV is a guard function that assigns
a guard to each transition t such that Type[G(t)] =
Boolean.

(8) E : A → EXPRV is an arc expression function that
assigns an arc expression to each arc a such that
Type[E(a)] = C(p)MS, where p is the place connected
to the arc a.

(9) I : P → EXPR∅ is an initialisation function that
assigns an initialisation expression to each place p
such that Type[I(p)] = C(p)MS.

For the inscriptions (C,G,E, I), EXPR denotes the set of
expressions provided by the inscription language CPN ML
(an extension of Standard ML). The type of an expression e
is denoted by Type[e]. MS refers to a multiset. Graphically,
in this paper places are illustrated as eclipses, transitions
as rectangles, guards in square brackets, and all other
inscriptions located next to the corresponding place/arc.

The execution of a CPN consists of occurrence of
transitions, or more precisely, binding elements. Concepts for
the execution are defined in the following.

Definition 2. For a Coloured Petri Net CPN = (P, T , A, Σ,
V , C, G, E, I), the following concepts are defined.

(1) A marking is a functionM that maps each place p ∈ P
into a multiset of tokens M(p) ∈ C(p)MS.

(2) The variables of a transition t are denoted Var(t) ⊆
V and consist of the free variables appearing in the
guard of t and in the arc expressions of arcs connected
to t.

(3) A binding of a transition t is a function b that maps
each variable v ∈ Var(t) into a value b(v) ∈ Type[v].
The set of all bindings for a transition is denoted B(t).

(4) A binding element is a pair (t, b) such that t ∈ T and
b ∈ B(t). The set of all binding elements BE(t) for a
transition t is defined by BE(t) = {(t, b) | b ∈ B(t)}.
The set of all binding elements in a CPN model is
denoted BE.

Definition 3. A binding element (t, b) ∈ BE is enabled in a
marking M if and only if the following two properties are
satisfied:

(1) G(t)〈b〉.
(2) For all p ∈ P : E(p, t)〈b〉 
= M(p). When (t, b) is

enabled inM, it may occur, leading to the markingM′

defined by:

(3) For all p ∈ P : M′(p) = (M(p) − −E(p, t)〈b〉) +
+E(t, p)〈b〉.

The symbols ++, −− and
= are multiset operations.
Definition 3 shows that the occurrence of a binding

element while in markingM1 produces a new markingM2, or

M1
(t,b)→ M2. M2 is said to be reachable from M1 and the set of

all markings reachable fromM is R(M). By considering steps
and occurrence sequences (see [6] for details) the state space
of a CPN can be obtained as the set of all markings (states)
reachable from the initial marking M0. More precisely, we
find the following.

Definition 4. The state space of a Coloured Petri net is a
directed graph SS = (NSS,ASS) with arc labels from BE,
where:

(1) NSS =R(M0) is the set of nodes or states.

(2) ASS = {(M, (t, b),M′) ∈ NSS×BE×NSS |M (t,b)→ M′}
is the set of arcs.

Knowing all possible states, it is possible to prove
properties such as deadlocks and livelocks of the system
modelled by the CPN. Two properties that are considered in
this paper relate to terminal markings and bounds.

Definition 5. Let a transition t ∈ T and a marking M be
given. M is a terminal marking if and only if for all t ∈ T :

¬(M
t→ ).

Definition 6. Let a place p ∈ P and a nonnegative integer
n ∈ N be given. n is an upper integer bound for p if and only
if for all M ∈R(M0) : |M(p)| ≤ n.

A state space can also be treated as a finite state automata
(FSA) where the binding elements represent the alphabet
accepted by the FSA. Theorems and algorithms developed
for the analysis of FSAs can be applied to determine if the
sequences of one state space/FSA is preserved in another
state space/FSA. This approach is based on the fact that
any nondeterministic FSA with ε-transitions, defined in
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Definition 7, can be converted into a canonical form, a
minimised deterministic FSA [31]. If the canonical forms
are isomorphic then the two initial FSAs have the same
language. Hence state space analysis is key to proving
dynamic properties, as well as equivalence of the protocol
and service language in protocol verification.

Definition 7. A nondeterministic FSA is a 5-tuple NDFSA =
(Q,Σ, s,H ,Δ) where, we find the following.

(1) Q is a finite set of states.

(2) Σ is an input alphabet.

(3) s is one of the states in Q designated as a start state.

(4) H is a set of halt or final states.

(5) Δ is a relation on (Q × Σ) × Q and is called the
transition relation.

5. CPN Model of FlexRay Transport Protocol

Protocol verification involves proving a protocol holds
desired dynamic properties, such as absence of deadlocks,
as well as proving that the protocol faithfully implements
the desired service specification. The steps for achieving
this are part of a commonly applied protocol engineering
methodology [12]. Although different methods can be used,
Coloured Petri nets are well suited to the task, as has been
demonstrated in numerous examples [29, 32–34]. The steps
applied in this paper are summarised in Figure 5.

Using the FrTp specification in [4], a CPN model of
the FrTp protocol is created (see the right-side of Figure 5).
Generating the state spaces for different initial configurations
of the CPN allows specific protocol properties, such as
absence of deadlock, to be proved. Section 5.2 describes the

protocol CPN model, while Section 6 reports results from the
state space analysis.

To show that the protocol specification faithfully refines
the service specification, the protocol language (which can
be obtained from the protocol state space) is compared to
the service language. Although [4] lists the set of service
primitives that can be exchanged between FrTp and the
upper layer, as shown in Figure 3, there is no explicit
definition of the possible orderings of service primitives.
Therefore, based on our understanding of both the PDU
Router (PduR) and FrTp protocol, we have developed a
CPN model of the service that aims to capture the possible
orderings of service primitives. The service language is
obtained from the state space of the service CPN. Section 5.1
presents the service CPN model, while Section 6 describes
how the languages are obtained from the state space and
reports results from the language comparison.

Although not shown in Figure 5, the methodology is
often used iteratively to verify a protocol in an incremental
manner. For example, the verification may first be applied
on a CPN that only models basic features, then applied again
as optional features are introduced into the CPN.

5.1. FrTp Service CPN. The primary purpose of the FrTp
service CPN, shown in Figure 6, is to generate the allowed
possible sequences of service primitives, that is, the FrTp ser-
vice language. The CPN model uses transitions to model the
delivery of service primitives between FrTp and PduR (the
transitions are highlighted with thick borders in Figure 6).
Other transitions model local events/actions at the sender
and receiver. As the interest is only in the sequences of service
primitives, and such sequences should be independent of
the protocol operations (e.g., retransmissions), details of the
protocol operation are not modelled. The service language
obtained from the service CPN is presented in Section 6.

5.2. FrTp Protocol CPN. To verify the functional properties
of FrTp, a CPN model of the protocol has been created. This
section outlines the design of the model, and presents part of
the CPN.

5.2.1. Model Design Decisions. For the verification of FrTp to
be successful, the FrTp CPN model must be a valid repre-
sentation of the protocol specification and the analysis tools
and techniques must be able to cope with the verification
(e.g., avoid state space explosion). It is also desirable that the
CPN is easy to maintain (e.g., to reflect potential changes
in FrTp or add new features for performance analysis). To
achieve this tradeoff between accuracy, clarity and details of
the model, numerous design decisions were made. The key
decisions and their justifications are described below.

Data Independence. As with many protocols, the operation
of FrTp is independent of the actual data. That is, the actions
of the sender and receiver are unaffected by the contents of
the data fields in each frame. Therefore that actual data is
not modelled in the CPN. However the operation of FrTp is
dependent on the size of the data, for example, the sender



8 International Journal of Vehicular Technology

ReceiverSender

s

EndTransfer

AckLoss

Ack

f Ack Ack

FrDataFrDataFrData

Ack

FrData

FrData

FrData

TxUnsuccess

f

Buffer

Buffer

CancelTx f
CancelTx

ProcessCancel

CancelDataTx
sProcessCancel

WaitDataTxWaitTxBuffer

f

FrData

WaitDataTx

WaitTxBuffer

FrData

ProcessBuffReq

ProcessBuffReq

f

RxData

TxSuccess

Ack

PduId

DataReady

Ack loss

Send Ack

Receive data

Generate ACK

PduR
FrTpTxConfirmation

Unsuccessful

[f = AckLoss
orelse f = EndTransfer]

PduR
FrTpCancelTransmit

Confirmation

FrTp
CancelTransmitRequest

[s = WaitTxBuffer 
orelse s = ProcessBuffReq
orelse s = WaitDataTx
orelse f = PduId
orelse f = FrData
orelse f = Buffer]

Receive ACK

Send data

Copy_data_to_local
framebuffer

PduR
FrTpProvideTxBuffer

PduR
FrTpRxIndication

PduR
FrTpTxConfirmation

Successful

FrTp
transmit

Ack_channel

FrameInfo

Data_channel

FrameInfo

ACK frame

FrameInfo

Data received

FrameInfo

Receiver_PduR

PduRStates

Receiver_FrTp

FrameInfo

Sender_FrTp

FrameInfo

Sender_PduR

DataReady
PduRStates

Figure 6: FrTp CPN Model: Service.

must decide whether a single frame can be sent carrying the
whole data, or segmentation into multiple frames is needed.
Therefore the CPN model considers the total size of the data
and the maximum frame size (both in bytes) as inputs, and
uses them to determine when to apply segmentation. An
alternative design choice could have been to abstract from
the actual size in bytes. That is, not explicitly modelling the
total size or maximum frame size, but instead introducing a
model parameter specifying the number of segments (1 to n).
However this would not make state space analysis any easier
and is potentially detrimental to the accuracy and clarity of
the model.

Communication Channel. A FlexRay communication bus
is full duplex, allowing multiple FlexRay controllers to
communicate via a shared medium. Rather than model the
detailed operations of the FlexRay data link and physical layer
protocols, we assume an abstract channel model: a frame
transmitted on the bus may either be received, in order,
at the intended destination or the frame is lost (i.e., not
received). This simplifies the CPN model and analysis, while
also capturing the core behaviour of the channel from FrTp’s
perspective. For example, if an error occurs on the bus due to
buffer overflows or link impairments, then a frame would not
be received by the destination. From FrTp’s perspective, no
matter what caused the error, the frame was transmitted but
not received, that is, lost. As the focus is only on functional
properties of the protocol (not performance), modelling the
reception of a frame in a nondeterministic manner allows
our analysis to consider how FrTp behaves when errors occur
in the FlexRay communication bus.

Number of PDUs. In AUTOSAR the PDU Router delivers
data (referred to as a PDU) to FrTp, which then transmits the

PDU as FrTp frames on the FlexRay communication bus. An
important design decision is whether to model the exchange
of an unlimited number of PDUs (which FrTp allows for) or
only consider a finite number of PDUs, in particular a single
PDU. The latter is preferable in order to simplify analysis, but
only if the CPN still accurately reflects the core behaviour
of FrTp. This will be true if the operation of FrTp when
handling one PDU is unaffected by other PDUs.

For a single connection (from one sender to one receiver)
we assume data PDUs from the PDU Router are handled
sequentially by FrTp. That is, sender A must finish the
transmission of the first PDU to receiver B before starting
to transmit a second PDU to B. With overtaking not possible
in the communication channel, the frames associated with
the first PDU will always be delivered before the first frame
associated with the next PDU is sent. In most cases, this
means the operation of FrTp for different PDUs will be
independent. The exception is when frames are delayed in
the communication channel and the delivery of the PDU by
the sender has been unsuccessful. Illustrated with a simple
example in Figure 7, a delayed ACK associated with the first
PDU can be misinterpreted as an ACK for the second PDU.
This is a well-known problem in any acknowledgment-based
protocol [11]. It can be solved by making the assumption a
frame has a maximum delay in the communication channel
and by limiting the transmission rate of PDUs such that
a delayed ACK will be received before the next PDU is
transmitted. We assume such a mechanism is in place (If
this assumption was not made, then when modelling only
the functional behaviour of FrTp an “error” would always
be detected. However in practice, if the timing aspects of
FrTp are well designed (e.g., timeout periods, transmission
rates), this “error” will not occur. Hence we are faced with
the modelling decision: include time in the model, which



International Journal of Vehicular Technology 9

Sender Receiver

Transmit

PDU1

Unsuccessful

Transmit

PDU2

SF

ACK (Pos)

Timeout

SF

?

Figure 7: Example error with delayed ACK in FrTp.

would add significant complexity, or assume the error will
not occur. We chose the latter. Analysis of the timing issues is
left for future work.). As a result, we assume sequential PDUs
from one sender to one receiver are independent.

There is no assumption about sending in order to other
receivers, that is, A may be transmitting a PDU to B while
also transmitting another PDU to C. However in this case, as
FrTp frames contain the address of the sender and receiver,
even if C received a frame intended to B the frame would be
disregarded. Hence it is assumed the operation of FrTp on
one connection (a pair of sender/receiver) is unaffected by
the operation of FrTp on another connection.

Finally PDU transmissions in opposite directions
are assumed to be independent. With source/destination
addresses included in frames and independent frame types
in each direction (SF, FF and CF from sender; FC and ACK
from receiver), frames arriving at B (and associated with a
PDU sent from A to B) will not affect the way B operates
when it is sending a PDU to A.

In summary, for most cases in FrTp the transmission
of one PDU will not affect the transmission of another.
However there is a specific case, delayed ACKs, when this is
not true unless the sending rate is limited. We assume that
the sending rate is limited, avoiding problems with delayed
ACKs. Hence only a single PDU is considered in the CPN
model and analysis.

Time. The FrTp sender uses a timer to determine when
to retransmit a frame if an expected ACK has not yet
been received. Time is not explicitly modelled in the CPN.
Instead the event of a timeout is considered nondetermistic:
if data has been sent and an ACK not yet received, then
the timeout either may occur or it may not occur. This
captures the possible behaviour of the protocol. Of course
if the model is to be used for performance analysis in the
future, explicit timing information would need to be added
(which is possible with CPNs and the software CPN Tools).

Optional Features. The optional features of cancelling a
transmission, changing parameters and overflow at the

FrTp

GenerateFrame

RxAck

Timeout

PduRTxConfirm

Sender

GenerateAckFrame

PositiveAck

FlowControlCTS

Receiver

Figure 8: FrTp CPN model: hierarchy.

receiver are not modelled. In addition, only the basic ISO-
compliant frame types are modelled (as opposed to the
optional extended frames). Our decision to focus on the core
features of FrTp first is part of the incremental approach to
protocol verification. If the core features can be verified to
be correct, then it may be possible to independently analyse
the different options one-by-one (rather than analysing all
features at once, which could quickly lead to the state space
explosion problem arising). Modelling and analysing the
optional features is left for future work.

5.2.2. Model Structure. FrTp is modelled as a hierarchical
CPN, where there is a CPN on a single top-level page.
The top-level page contains substitution transitions, which
in fact represent a CPN on a subpage. The hierarchy is
shown in Figure 8. The top-level page models the main
steps of transmitting and receiving frames. Seven subpages
model details of: generating data and ACK frames (separated
as positive ACK and flow control frames at the receiver);
processing an ACK upon reception; handling timeouts; and
generating confirmation primitives to the PduR at the sender.
In total there are 15 places and 26 transitions. Important
constants and colour sets used in the model are in Figure 9.
To support manual validation of the model against the
specification, the naming scheme for CPN elements follows
that used in the specification. Key pages are described in
Section 5.2.3—the remaining are presented in the appendix.

5.2.3. Model Description. The flow of data for a single
message sent from sender to receiver is highlighted by the
thick arcs in the top-level page (Figure 10). On the left of
the page is the sender, in the middle is the communication
channel, and the right is the receiver. At the top the
interface between PDU Router and FrTp is modelled. The
initial marking of place From Tx PduR is 1‘Transmit.
This indicates the PDU Router has data ready to transmit.
The occurrence of transition FrTp Transmit models the
delivery of that data to FrTp.

The place Data to Send contains a 5-tuple: bytes
already sent; bytes already acknowledged; sequence number
of last frame sent; sequence number of last frame acknowl-
edged; and current block size. This information is used
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(∗Default values of system constant∗)
val WholeDataC = ref 400;
val FrameSizeC = ref 100;
val BSC = ref 2;
val InitialSNC = ref 0;
val MaxRetryC = ref 1;
val TimeoutEnableC = ref true;
val LossEnableC = ref true;
(∗Data types (colour sets) ∗)
colset FrameType = with SingleFrame | FirstFrame | ConsecutiveFrame |

FlowControl | AckFrame;
colset FrameState = with CTS | WT | OVFLW | FrameStateNotSet;
colset   Ack = with Positive | Negative | AckNotSet;
colset Frame = record ft:FrameType ∗dl:DataLength ∗fs:FrameState ∗sn:SN ∗ack:Ack ∗

bs:BlockSize ∗data:Data;
colse Frames = list Frame;
colset NSDU = with Transmit | Indication | Successful | Unsuccessful;
colset DataToSend = product SentData ∗AckedData ∗SentSN ∗AckedSN ∗CurrentBS;
colset BSControl = product CanSent ∗NextTxSN;
colset DataReceived = product DataLength ∗RxdFrame ∗NextRxSN;
(∗colsets not listed are of type in∗)
(∗variable and function definitions are not show∗)

Figure 9: Selected FrTp CPN declarations.

and updated by transitions modelling the generation and
reception of frames.

Frames containing data are generated and stored in the
transmit buffer (place Sender FrTp). This, as well as the
receive buffer (place Receiver FrTp), is modelled as a FIFO
queue. The type of frame generated (single frame, first frame,
consecutive frame) depends on the data size, block size and
previous frames generated. This is modelled in detail in the
GenerateFrame subpage (the transition GenerateFrame is
a substitution transition, as indicated by the double lines).

Using the standard CPN ML constructs for mod-
elling FIFO queues, a list of frames is stored in place
Data Channel. Initially empty, the occurrence of transition
TxFrame adds a frame to the tail of the list and RxFrame
extracts the frame from the head of the list. The function
LossEnable() returns true if a model input configuration
variable is set to enable frame loss. In that case, transi-
tion Frame Loss will be enabled whenever a frame is in
Data Channel, and its occurrence deletes a frame from the
head of the list.

Upon receiving a data frame, the receiver processes the
received frame and potentially generates an ACK or FC
frame. The detailed procedure is modelled on the subpage
GenerateAckFrame. The place Data Received models the
total number of bytes expected, the bytes received, and
the next expected sequence number in a 3-tuple. Once the
bytes received equals the bytes expected the data can be
delivered to the receiver PDU Router. This is modelled by
the FrTp Indication transition, putting an Indication
token in place To Rx PduR.

As data frames are processed by the receiver, the FC,
NACK and PACK frames may be sent on the return Ack
channel. Upon reception the sender processes the frame,
as modelled on subpage Rx Ack (Figure 11). If a FC frame

is received, depending on the number of retries (place
Number of Retry), new data frames may be generated and
sent. If a PACK is received, then the data transfer is successful
and via the PduR FrTpTxConfirmation subpage, a Confir-
mation(Successful) service primitive is delivered to the PDU
Router. If a FC(Overflow) is received, or the maximum num-
ber of retries has been reached, a Confirmation(Unsuccessful)
primitive is delivered to the PDU Router.

Key input parameters to the model are the following.

WD (Whole Data): Size of the data sent by the PDU
Router [bytes].

FS (Frame Size): Maximum size of payload in a frame
[bytes].

BZ (Block Size): Number of consecutive frames
allowed to be sent before flow control received.

MR (Max Retry): Maximum number of retries sender
makes before aborting the transfer

Loss: If true then frame loss is possible in the channel;
otherwise a reliable channel is assumed

Varying the values of these parameters allows for investi-
gation of FrTp under different conditions.

6. Verification of FlexRay Transport Protocol

Simulation of the CPN (i.e., stepping through selected
occurrence sequences) was used to validate the operation
of the model. Then state space and language analysis was
performed in order to prove the properties of FrTp. This
section defines the desired properties and reports the final
set of results from the analysis.
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Figure 10: FrTp CPN Model: Top-level page.

6.1. Desired Properties. A key property of any protocol is
absence of deadlocks. In this paper, deadlocks are defined
as unexpected terminal markings in the state space, where
the set of terminals markings is denoted as MTM. We have
designed the CPN model so that after a PDU is delivered,
the sender/receiver do not revert back to an initial marking.
Instead we consider those markings that the sender/receiver
terminate in as expected. Three sets of expected terminal
markings—MSS, MUU and MUS—are defined based on the
intended operation of FrTp. For brevity assume:

Pchannel = {Data Channel,Ack Channel},

Pbuffer =
{
Sender FrTp,Receiver FrTp

}
.

(1)

Marking MSS should be reached if both sender and
receiver have successfully completed the data transfer, that is,

Confirmation(Successful) primitive delivered to sender PduR
and Indication delivered to receiver PduR:

MSS
(
p
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Successful if p = To Tx PduR

(0, 0, x, x, ) if p = Data to Send

Indication if p = To Rx PduR

true if p = Indication Sent

(WD,WD, ) if p = Data Received

[] if p ∈ Pchannel

[] if p ∈ Pbuffer

∅MS if p = Confirmation

∅MS if p = Ack Frame

otherwise.

(2)
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Figure 11: FrTp CPN Model: RxAck.

∅MS is the empty multiset (no tokens in the place), and
following Standard ML notation is any value and [] is an
empty list.

Marking MUU should be reached if the data transfer is
unsuccessful and both transmitter and receiver are aware of
the failure (Confirmation (unsuccessful) at sender PduR and
Indication at receiver PduR):

MUU
(
p
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unsuccessful if p = To Tx PduR

∅MS if p = To Rx PduR

false if p = Indication Sent

[] if p ∈ Pchannel

[] if p ∈ Pbuffer

∅MS if p = Confirmation

∅MS if p = Ack Frame

otherwise.

(3)

Finally, there may be a case where the receiver suc-
cessfully receives the data (Indication delivered to receiver
PduR), but the transmitter is not informed of this (e.g.,

Transmit
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Successful

Unsuccessful

Successful

Unsuccessful

Indication

Indication
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5

Figure 12: Desired FrTp service language.

the acknowledgment cannot be delivered successfully), and
hence Confirmation(Unsuccessful) delivered to sender PduR:

MUS
(
p
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unsuccessful if p = To Tx PduR

Indication if p = To Rx PduR

true if p = Indication Sent

(WD,WD, ) if p = Data Received

[] if p ∈ Pchannel

[] if p ∈ Pbuffer

∅MS if p = Confirmation

∅MS if p = Ack Frame

otherwise.
(4)
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The first desired property of FrTp is the following.

Property 1 (Absence of deadlocks). The FrTp CPN contains
no deadlocks if and only if:

MTM =MSS ∪MUU ∪MUS. (5)

Ideally the protocol language and desired service lan-
guage shall be equivalent. The desired service language (LS)
is defined as the language accepted by the FSA in Figure 12.

Property 2 (Language equivalence). The FrTp Protocol lan-
guage (LP) is equivalent to the FrTp Service language (LS) if
and only if

LP ⊆ LS ∧LS ⊆ LP. (6)

Understanding the number of frames that can be in the
network at any one time is useful for dimensioning trans-
mit/receive buffers as well as the FlexRay bus capacity and
utilisation. Although not explicitly stated in the specification

[4], both the buffers and channels shall be bounded. It is
difficult to know the upper bounds prior to analysis, and
hence state space analysis was used to determine the bounds.
Therefore in this paper rather than defining the bounds as
properties, we simply report the bounds measured from the
state space analysis in the next section.

6.2. Analysis Approach. State space and language analysis
has been applied to prove the desired properties of FrTp
for selected sets of input parameter values, as well as
make other observations on its behaviour. For brevity, the
specific configurations of the FrTp protocol CPN (and
corresponding state space) are referred to as d-BS-MR-Loss
where d = WD/FS and Loss is T if loss is modelled, otherwise
F.

6.2.1. State Space Analysis. For a given set of input parameter
values, CPN Tools can calculate the full state space of the
FrTp CPN. Then CPN ML queries can be applied to prove
properties from the state space. For example, a CPN ML
query function was written to check if all terminal markings
are one of either MSS, MUU or MUS.

6.2.2. Language Analysis. The FrTp service CPN
(Section 5.1) was used to generate a service state space
in CPN Tools. The service state space is SSS = (NS,AS) and
has initial marking M0S and terminal markings TMS. By
treating the state space as a nondeterministic FSA, as defined
in Definition 8, where binding elements for the transitions
representing the service primitives of interest are mapped to
symbols of the alphabet (recall that the optional features of
changing parameters and cancelling transmissions are not
considered), the service language LS can be obtained. The
language is shown in Figure 12.

Definition 8. The nondeterministic FSA of the FrTp service
is NDFSAS = (Q,Σ, s,H ,Δ) where Q = NS, s = M0S ,
Σ = {Transmit, RxIndication, Successful, Unsuccessful, ε},
H = TMS and Δ can be obtained from arcs of the service
state space, AS, where a binding element (t, b) is mapped to
symbol, l, in the alphabet as

l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Transmit if (t, b) = (FrTp Transmit, 〈〉)

RxIndication if (t, b) = (PduR FrTpRxIndication, 〈〉)

Successful if (t, b) = (PduR FrTpTxConfirmation Successful, 〈〉)

Unsuccessful if (t, b) = (PduR FrTpFrTpTxConfirmation UnSuccessful,
〈
f = , s = 〉)

ε otherwise.

(7)

Similarly, each state space of the FrTp protocol
CPN can be treated as a NDFSA, and the proto-
col language, LP , obtained. For brevity, the definition

of NDFSAP is not shown however it is similar to
Definition 8 but the service primitives are mapped from
the four transitions FrTp Transmit, FrTp Indication,
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Successful and Unsuccessful (the last two, on page
PduRTxConfirm).

6.3. Results. Results from the state space and language
analysis have been collected for a range configurations. In
particular, both the cases of no loss and loss have been
considered. In this paper we present only results when
frame loss is enabled. The case of no loss produced similar
results and much smaller state spaces. In fact, because of
the nondeterministic nature of the CPN, every occurrence
sequence possible with no loss, is also possible when loss is
enabled (i.e., the Frame Loss and Ack Loss transitions do
not occur). In addition, we only present results when WD is
an integer number of FS = 100.

6.3.1. No Retransmissions. State spaces have been calculated
from the FrTp protocol CPN when no retransmissions are
allowed (MR = 0) for the 100 combinations of config-
urations [1· · · 10]-[1· · · 10]-0-T. Results are presented in
Table 1. The first column gives the configuration, and the
next two columns the number of nodes and arcs in the state
space. The “Terminals” column gives the total number of
terminal markings, followed by a triple giving the count of
MSS, MUU and MUS. The last column gives the upper integer
bound on places Data channel and Ack channel.

Note that some results from the 100 configurations are
not shown (although were obtained)—they will be discussed
shortly.

The first observation from the state space analysis is
that Property 1 (absence of deadlocks) is proved to hold for
all configurations [1· · · 10]-[1· · · 10]-0-T (since |MTM| =
|MSS| + |MUU| + |MUS|).

For each configuration the FrTp protocol language
was also obtained. Every protocol language produced was
compared to the service language in Figure 12, and all
were equivalent hence proving Property 2 for configurations
[1· · · 10]-[1· · · 10]-0-T.

State space analysis is powerful for investigating dynamic
properties of the FrTp CPN. However there are two limi-
tations of this analysis approach as can be readily observed
from the results so far: the state explosion problem, where
eventually the state space becomes too large to calculate
in reasonable time/memory and the dependence on initial
parameter values, therefore calculating the state space for
every possible combination is time consuming or even
impossible (The state space sizes reported in Table 1 are
manageable, as a state space with 140,000 nodes and 600,000
arcs takes about 90 minutes to calculate on a Intel Core
2 Quad Q8400 2.6 GHz processor with 8 GB memory.).
Properties 1 and 2 are proven for only for configurations
[1· · · 10]-[1· · · 10]-0-T. However by observing trends in
the state spaces generated from these configurations, we can
gain increased confidence that the properties should hold for
other configurations.

First note that for the configurations with BS ≥ d − 1,
the state space of the protocol is independent of BS. For
example, the state spaces of configurations 3-2-0-T, 3-3-0-
T and 3-4-0-T are identical (whereas 3-1-0-T is different)

(Although all results for configurations [1· · · 10]-[1· · · 10]-
0-T were calculated, this is why some results are omitted from
Table 1.). This is because, after the first frame (FF), there are
no more than BS CF frames to transmit, resulting in the same
protocol behaviour independent of the value of BS. This is
illustrated with an example in Figure 13.

Proposition 1. For the FrTp protocol CPN: MR = 0, Loss =
T , for all d ∈ {1, . . . , 10} for all BS ∈ N∗ | BS ≥ d − 1 :
Properties 1 and 2 hold.

Proof. Proof is by inspection of the FrTp protocol CPN.
BS is used only when the receiver generates an ACK
(modelled by transitions on page GenerateAckFrame and
its subpages). The bs field in an ACK is set to the
value of BS by the functions FLOWCONTROL(), PACK()
and NACK(). When the sender receives an ACK (tran-
sitions on RxAck page), the value of the bs field is
stored in the place BlockSize Control. We denote M
(BlockSize Control) = (b, sn) where b counts the blocks
allowed to be sent and sn is the next sequence number to
use. The value of b is only modified by the following sets of
transitions occurring.

(1) RxPositiveAck, RxFlowControl and RxNega-
tiveAck on page RxAck set b to the value of bs in
the received ACK frame.

(2) Timeout sets b to the value of bs received in the
previous ACK (taken from place Data to Send).

(3) All transitions that create data frames, Tgenerate =
{GenerateFirstFrame, GenerateSingleFrame,
GenerateConsecutiveFrame}, decrement b by 1.

Only the occurrence of the transitions Tgenerate depend
on the value of b. That is, for all t ∈ Tgenerate :
G(t) =IsX Frame(· · ·)∧Valid(· · ·) where X refers to
the type of frame (first, single or consecutive). A condition
for Valid() to be true is b /= 0. Also note that transitions
Tgenerate increment the SentData whenever they occur
(stored in place Data to Send). A second condition for
Valid() to be true is SentData < WD. Therefore transitions
Tgenerate both decrement the count of blocks to be sent (b)
and increment the data already sent (SentData). The guards
on these transitions prevent them from occurring if either
the maximum number of frames allowed by BS have been
sent or all d frames has been sent. If GenerateFirstFrame
has occurred once, then there are d − 1 consecutive frames
left to be sent. If BS ≥ d − 1 then after sending all d −
1 consecutive frames then SentData = WD and for all
t ∈ Tgenerate : G(t) = false. As no transitions other than
Tgenerate depend on b (and hence BS), increasing BS will not
change the set of transitions that can occur. Therefore, the
same state space will be generated, irrespective of BS. As full
state spaces have been calculated, and Properties 1 and 2
proven true for the configurations [1· · · 10]-[1· · · 10]-0-T,
Proposition 1 holds.

A second observation from the state spaces of configura-
tions [1· · · 10]-[1· · · 10]-0-T is that their sizes (number of
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Table 1: State space results for FrTp protocol CPN with no retries (1).

Config Nodes Arcs Terminals Bounds

1-1-0-T 38 67 4 (1,2,1) (1,1)

2-1-0-T 62 105 7 (1,5,1) (1,1)

3-1-0-T 86 143 10 (1,8,1) (1,1)

4-1-0-T 110 181 13 (1,11,1) (1,1)

5-1-0-T 134 219 16 (1,14,1) (1,1)

6-1-0-T 158 257 19 (1,17,1) (1,1)

7-1-0-T 182 295 22 (1,20,1) (1,1)

8-1-0-T 206 333 25 (1,23,1) (1,1)

9-1-0-T 230 371 28 (1,26,1) (1,1)

10-1-0-T 254 409 31 (1,29,1) (1,1)

1-2-0-T 38 67 4 (1,2,1) (1,1)

2-2-0-T 62 105 7 (1,5,1) (1,1)

3-2-0-T 118 219 11 (1,9,1) (2,1)

4-2-0-T 142 257 14 (1,12,1) (2,1)

5-2-0-T 198 371 18 (1,16,1) (2,1)

6-2-0-T 222 409 21 (1,19,1) (2,1)

7-2-0-T 278 523 25 (1,23,1) (2,1)

8-2-0-T 302 561 28 (1,26,1) (2,1)

9-2-0-T 358 675 32 (1,30,1) (2,1)

10-2-0-T 382 713 35 (1,33,1) (2,1)

1-3-0-T 38 67 4 (1,2,1) (1,1)

2-3-0-T 62 105 7 (1,5,1) (1,1)

3-3-0-T 118 219 11 (1,9,1) (2,1)

4-3-0-T 295 665 16 (1,14,1) (3,2)

5-3-0-T 319 703 19 (1,17,1) (3,2)

6-3-0-T 375 817 23 (1,21,1) (3,2)

7-3-0-T 552 1263 28 (1,26,1) (3,2)

8-3-0-T 576 1301 31 (1,29,1) (3,2)

9-3-0-T 632 1415 35 (1,33,1) (3,2)

10-3-0-T 809 1861 40 (1,38,1) (3,2)

1-4-0-T 38 67 4 (1,2,1) (1,1)

2-4-0-T 62 105 7 (1,5,1) (1,1)

3-4-0-T 118 219 11 (1,9,1) (2,1)

4-4-0-T 295 665 16 (1,14,1) (3,2)

5-4-0-T 793 2143 22 (1,20,1) (4,3)

6-4-0-T 817 2181 25 (1,23,1) (4,3)

7-4-0-T 873 2295 29 (1,27,1) (4,3)

8-4-0-T 1050 2741 34 (1,32,1) (4,3)

9-4-0-T 1548 4219 40 (1,38,1) (4,3)

10-4-0-T 1572 4257 43 (1,41,1) (4,3)

6-5-0-T 2075 6453 29 (1,27,1) (5,4)

7-5-0-T 2099 6491 32 (1,30,1) (5,4)

8-5-0-T 2155 6605 36 (1,34,1) (5,4)

9-5-0-T 2332 7051 41 (1,39,1) (5,4)

10-5-0-T 2830 8529 47 (1,45,1) (5,4)

7-6-0-T 5158 17850 37 (1,35,1) (6,5)

8-6-0-T 5182 17888 40 (1,38,1) (6,5)

9-6-0-T 5238 18002 44 (1,42,1) (6,5)

10-6-0-T 5415 18448 49 (1,47,1) (6,5)
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Table 1: Continued.

Config Nodes Arcs Terminals Bounds

8-7-0-T 12200 45837 46 (1,44,1) (7,6)

9-7-0-T 12224 45875 49 (1,47,1) (7,6)

10-7-0-T 12280 45989 53 (1,51,1) (7,6)

9-8-0-T 27679 110844 56 (1,54,1) (8,7)

10-8-0-T 27703 110882 59 (1,57,1) (8,7)

10-9-0-T 60756 255689 67 (1,65,1) (9,8)

(CanSent     , NextTxSN + 1)

(CanSent, NextTxSN)

(CanSent     , NextTxSN + 1)

(CanSent, NextTxSN)
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then (SentData + (WholeData()-SentData), AckedData, SentSN + 1, AckedSN, BS())
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a
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nodes, |N|, and arcs, |A|) are directly related to d and BS. By
applying curve fitting, the number of nodes in the state space
of the configurations analysed can be expressed as

|Nd-BS-0-T| = |N1-BS-0-T| +

⎛

⎝
⌊
d + BS− 2

BS

⌋ BS∑

i=1

ci −
BS∑

i=X
ci

⎞

⎠,

where X = BS− BS
⌊
d + BS− 2

BS

⌋
+ d,

|N1-BS-0-T| = 38,

c = [24, 56, 177, 498, 1282,

3083, 7042, 15479, 33077].
(8)

An identical formula is obtained for the number
of arcs, |Ad-BS-0-T|, except |A1-BS-0-T| = 67 and c =
[38, 114, 446, 1478, 4310, 11397, 27987, 65007, 144845].

Intuitively, for a fixed BS as d increases, there are
more frames to transmit leading to a larger state space.
In the cases when the sender must wait for an ACK
before proceeding the protocol operations are sequential.

For example, from the results in Table 1 when BS = 1,
incrementing d results in an additional consecutive frame
and ACK, thereby an additive increase in the state space
size. However with larger values of BS, increasing d allows
for different levels of concurrency among transitions in the
CPN. For example consider Figure 14. For d = 2 there
is only one CF, however with d = 3, two CFs are sent,
and an increased state space results because of both the
extra frame as well as the possible interleavings between
the transitions modelling transfer of the two CFs. With
d = 4 there are even more possible interleavings with
three CFs, leading it an even larger increase in state space
size.

The significance of finding a closed form solution for
the state space size is threefold: by analysing selected con-
figurations, increased confidence that the protocol operates
correctly is gained for configurations not analysed; it suggests
the CPN and protocol exhibit structure that could be utilised
in further analysis to alleviate the state explosion problem
(e.g., using state space reduction techniques) and to avoid
the dependence on initial parameter values (i.e., parametric
verification [35]); and it provides guidance as to which
configurations can be analysed within reasonable time using
CPN Tools.
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If (8) (and the corresponding equation for arcs) holds
for d > 10, BS > 10, then we conjecture that the desired
properties will also hold.

Conjecture 2. For the FrTp protocol CPN: MR = 0, Loss = T ,
for all d ∈ N∗, for all BS ∈ N∗: Properties 1 and 2 hold.

Selected configurations have been tested and for each,
the state space size matches that expected and the desired
properties are true (see Table 2).

Using a similar approach as with the size of the state
space, we can observe trends in the upper integer bounds
of the channels. For configurations [1· · · 10]-[1· · · 10]-0-T
the bounds can be expressed as:

UBdata =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if d = 0,

d − 1 if 1 < d ≤ BS,

BS if d > BS,

UBack =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if d ≤ 2,

d − 2 if 2 < d ≤ BS,

BS− 1 if d > BS.

(9)

For the data channel, the sender cannot transmit more
than BS frames before waiting for an ACK, and hence the
bound is BS (unless the total number of frames to be
transmitted, d, is less than BS). For the ack channel, the
bound is BS − 1 because in the case of the first CF lost, then
for the remaining BS − 1 CFs sent, the receiver will respond
with a NACK, that is, BS − 1 NACKs in the ack channel. We
conjecture that this will be true for all configurations.

Conjecture 3. For the FrTp protocol CPN: MR = 0, Loss =
T , for all d ∈ N∗, for all BS ∈ N∗: (9) hold for the channel
bounds.

6.3.2. Retransmissions Allowed. With retransmissions al-
lowed (MR > 0) the FrTp sender may retransmit a frame
after a timeout occurs. Hence more concurrent operations
are possible, leading to increased number of occurrence
sequences (which increases as MR increases) as illustrated in
the selected state space results in Tables 3 and 4.

Table 3 shows the results from the configuration 1-1-
[1· · · 10]-T. There is only a single frame transmitted (or
retransmitted). From the state space and language analysis
for all 10 configurations Properties 1 and 2 hold. The state
space size can be expressed as:

|N1-1-MR-T| = 1
24

4∑

i=0

ciMRi

where c = [912, 1884, 1258, 336, 26].

(10)

An identical formula is obtained for the number of arcs,
|A1−1−MR−T|, except c = [1608, 4062, 3813, 1566159]. For the
number of terminal markings:

|T1-1-MR-T| = 2(MR + 2) + 1. (11)

For d > 1 the state space size grows rapidly for even small
values of MR. Currently there are no closed form equations
for the state space size in these cases.

Table 4 shows the results from selecting configurations
with increasing d. Again, for all configurations Properties 1
and 2 hold.

For configurations [1· · · 10]-1-[1,2]-T-closed-form
solutions for the state space size and number of terminals
exist—for the number of nodes, see (12) and (13). Table 5
shows example state space results with larger variable
values—the results match (10), (12) and (13), respectively,

|Nd-1-1-T| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

184 d = 1,

1
2

2∑

i=0

ci(d − 2)i d ≥ 2,

where c = [796, 521, 51]

(12)

|Nd-1-2-T| =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

534 d = 1,

1573 d = 2,

1
6

3∑

i=0

ci(d − 3)i d ≥ 3,

where c = [20634, 13797, 2487, 138].

(13)

6.4. Discussion and Future Work. Coloured Petri nets and
state space analysis has been used to prove the FrTp
protocol, under selected configurations, is deadlock-free
and conforms to the service specification when transferring
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Table 2: State space results for FrTp protocol CPN with no retries (2).

Config Nodes Arcs Terminals Bounds

20-1-0-T 494 789 61 (1,59,1) (1,1)

20-2-0-T 782 1473 70 (1,68,1) (2,1)

20-3-0-T 1604 3693 79 (1,77,1) (3,2)

20-4-0-T 3315 8969 88 (1,86,1) (4,3)

20-5-0-T 6904 21301 97 (1,95,1) (5,4)

20-6-0-T 15422 53454 106 (1,104,1) (6,5)

20-7-0-T 26399 97993 113 (1,111,1) (7,6)

20-8-0-T 55577 222219 120 (1,118,1) (8,7)

11-10-0-T 130006 568613 79 (1,77,1) (10,9)

Table 3: State space results for FrTp protocol CPN with no retries (1).

Config Nodes Arcs Terminals Bounds

1-1-1-T 184 467 7 (3,2,2) (2,1)

1-1-2-T 534 1669 9 (5,2,2) (3,1)

1-1-3-T 1211 4303 11 (7,2,2) (4,1)

1-1-4-T 2364 9158 13 (9,2,2) (5,1)

1-1-5-T 4168 17182 15 (11,2,2) (6,1)

1-1-6-T 6824 29482 17 (13,2,2) (7,1)

1-1-7-T 10559 47324 19 (15,2,2) (8,1)

1-1-8-T 15626 72133 21 (17,2,2) (9,1)

1-1-9-T 22304 105493 23 (19,2,2) (10,1)

1-1-10-T 30898 149147 25 (21,2,2) (11,1)

a single PDU from sender to receiver. Although there are
several ambiguities in the text, no significant errors have been
identified in the protocol specification in [4]. For a protocol
to be used for in-vehicle communication, applying formal
methods to gain a higher degree of confidence in the correct
operation is still beneficial. However there are still issues to
be considered in future work.

Model Expressiveness. The use of CPNs represents a tradeoff
between model expressiveness and analysis capabilities. A
focus of the model development was to create accurate
specifications of the protocol that could be understood by
nonCPN-experts and used in other protocol engineering
tasks. Creating graphical models using a structure, naming
schemes and constructs that are similar to those used in the
specification is one way to aid the validation of the model.
Other approaches to validate the model should also be
considered. The model expressiveness however comes at the
expense of formal analysis capabilities: other methods/tools
(e.g., SPIN) can analyse much larger state spaces.

FrTp Features Not Analysed. Several optional features of
the FrTp specification were not modelled or analysed. The
CPN could be extended to include these features, and then
analysed again. However its desirable to take advantage
of the existing results and avoid the limitations of state
space analysis. For example, component-based modelling
and analysis techniques may be applicable for features such
as changing parameters during a FrTp connection.

In the model design, assumptions were made about the
independence of multiple PDUs. Ideally, a formal proof
of independence or formal analysis with the assumptions
relaxed is required for complete verification of FrTp. How-
ever as the issue with delayed ACKs can be solved with
timing constraints, more practical insights into FrTp could
be obtained by integrating time into the CPN and conducting
performance analysis.

Limitations of State Space Analysis. In the paper the lim-
itations of state space analysis of FrTp quickly become
apparent. For instance, FrTp supports block sizes of 1 to
16: with retransmissions possible only block sizes of 1
to 4 (and small values of d) are analysed. To overcome
these limitations, by analysing trends in the state space
results and closer inspection of the CPN, observations on
the desired properties are made without generating the
complete set of state spaces. Proposition 1 shows, under
certain conditions, the desired properties hold for all block
sizes greater than d−1. Several conjectures that the properties
hold are presented. The selected state space analysis provides
increased confidence that FrTp is error-free. Proof of the
conjectures, which requires detailed manual analysis of the
CPN model using for example techniques applied in [29], is
left for future work.

Another promising technique to alleviate the state explo-
sion problem is to utilise the sweep-line method [36]. This
method discards states from memory if they can no longer
be reached. This has been applied for other protocols, where
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Table 4: State space results for FrTp protocol CPN with retries (2).

Config Nodes Arcs Terminals Bounds

1-1-1-T 184 467 7 (3,2,2) (2,1)

2-1-1-T 398 1037 11 (3,6,2) (2,2)

3-1-1-T 684 1793 17 (3,12,2) (2,2)

4-1-1-T 1021 2699 23 (3,18,2) (2,2)

5-1-1-T 1409 3755 29 (3,24,2) (2,2)

6-1-1-T 1848 4961 35 (3,30,2) (2,2)

7-1-1-T 2338 6317 41 (3,36,2) (2,2)

8-1-1-T 2879 7823 47 (3,42,2) (2,2)

9-1-1-T 3471 9479 53 (3,48,2) (2,2)

10-1-1-T 4114 11285 59 (3,54,2) (2,2)

1-1-2-T 534 1669 9 (5,2,2) (3,1)

2-1-2-T 1573 5254 13 (5,6,2) (3,3)

3-1-2-T 3439 11644 22 (5,15,2) (3,3)

4-1-2-T 6176 21127 33 (5,26,2) (3,3)

5-1-2-T 9880 34119 44 (5,37,2) (3,3)

6-1-2-T 14689 51128 55 (5,48,2) (3,3)

7-1-2-T 20741 72662 66 (5,59,2) (3,3)

8-1-2-T 28174 99229 77 (5,70,2) (3,3)

9-1-2-T 37126 131337 88 (5,81,2) (3,3)

10-1-2-T 47735 169494 99 (5,92,2) (3,3)

1-1-3-T 1211 4303 11 (7,2,2) (4,1)

2-1-3-T 4747 18608 15 (7,6,2) (4,4)

3-1-3-T 13112 52597 24 (7,15,2) (4,4)

4-1-3-T 28486 115521 35 (7,26,2) (4,4)

5-1-3-T 53587 218659 46 (7,37,2) (4,4)

6-1-3-T 91792 375751 57 (7,48,2) (4,4)

7-1-3-T 146961 602453 68 (7,59,2) (4,4)

Table 5: State space results for FrTp protocol CPN with retries (3).

Config Nodes Arcs Terminals Bounds

1-1-15-T 115103 593962 35 (31,2,2) (16,1)

50-1-1-T 71654 206525 299 (3,294,2) (2,2)

14-1-2-T 109501 392772 143 (5,136,2) (3,3)

properties can be proved for state spaces 2-3 times the size
of when sweep-line is not applied [34]. In FrTp the number
of retries could be used as a progress measure to determine
which states can/cannot be reached in the future.

7. Conclusions

AUTOSAR is an architecture for developing and deploying
embedded applications in vehicles. One of the many compo-
nents of AUTOSAR is the FlexRay Transport Protocol, which
provides additional reliability and efficiency to the FlexRay
inter-ECU communication bus. This paper has presented
a formal Coloured Petri net model of both the FrTp
protocol and service specifications. Using formal analysis
techniques, the models enabled the verification of FrTp for

selected configurations. This includes proving the absence
of deadlocks, conformance of the protocol to the service
specification, and characterisation of the upper bounds of
buffers when a single-protocol data unit is transferred from
FrTp sender to receiver. Proof of these properties, and further
insights relating the state space to protocol parameters,
provides a high-degree of confidence that the design of
FlexRay Transport Protocol is error-free.

Appendix

FrTp Protocol CPN

Figures 15, 16, 17, 18, 19, and 20 illustrate the remaining
pages of the FrTp protocol CPN model.
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